Extracellular alpha-synuclein (αsyn) oligomers, associated to exosomes or free, play an important role in the pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that these extracellular moieties activate microglia leading to enhanced neuronal damage. Despite extensive efforts on studying neuroinflammation in PD, little is known about the impact of age on microglial activation and phagocytosis, especially of extracellular αsyn oligomers. Here, we show that microglia isolated from adult mice, in contrast to microglia from young mice, display phagocytosis deficits of free and exosome-associated αsyn oligomers combined with enhanced TNFα secretion. In addition, we describe a dysregulation of monocyte subpopulations with age in mice and humans. Accordingly, human monocytes from elderly donors also show reduced phagocytic activity of extracellular αsyn. These findings suggest that these age-related alterations may contribute to an increased susceptibility to pathogens or abnormally folded proteins with age in neurodegenerative diseases.
Objectives-Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD) with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression.Results-In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the CNS specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, down-regulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn mediated toxicity. Interpretation-Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization from a vicious circle thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies.
Amyotrophic lateral sclerosis (ALS) is a devastating, adult-onset neurodegenerative disorder of the upper and lower motor systems. It leads to paresis, muscle wasting and inevitably to death, typically within 3-5 years. However, disease onset and survival vary considerably ranging in extreme cases from a few months to several decades. The genetic and environmental factors underlying this variability are of great interest as potential therapeutic targets. In ALS, men are affected more often and have an earlier age of onset than women. This gender difference is recapitulated in transgenic rodent models, but no underlying mechanism has been elucidated. Here we report that SNPs in the brain-specific promoter region of the transcriptional co-activator PGC-1α, a master regulator of metabolism, modulate age of onset and survival in two large and independent ALS populations and this occurs in a strictly male-specific manner. In complementary animal studies, we show that deficiency of full-length (FL) Pgc-1α leads to a significantly earlier age of onset and a borderline shortened survival in male, but not in female ALS-transgenic mice. In the animal model, FL Pgc-1α-loss is associated with reduced mRNA levels of the trophic factor Vegf-A in males, but not in females. In summary, we indentify PGC-1α as a novel and clinically relevant disease modifier of human and experimental ALS and report a sex-dependent effect of PGC-1α in this neurodegenerative disorder.
Abstract:Microglia are the resident phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to overall increased phagocytic activity and production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in monocytes and microglia are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT 2B ), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT 2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT 2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT 2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT 2B mRNA in spinal cord and displayed less pronounced degeneration of mononuclear phagocytes than patients carrying two copies of the more common A allele. Thus functional 5-HT 2B receptors limit degeneration of spinal cord macrophages (most likely microglia), and slow disease progression in ALS. Targeting this receptor might be therapeutically useful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.