Solving single-digit subtraction and addition problems is associated with left and right shifts of attention in adults. Here, we explored the development of these spatial shifts in children from the third to fifth grade. In two experiments, children solved single-digit addition (Experiments 1 and 2), subtraction (Experiment 1), and multiplication (Experiment 2) problems in which operands and the arithmetic sign were shown sequentially. Although the first operand and the arithmetic sign were presented on the center of a screen, the second operand was presented either in the left or the right visual field. In Experiment 1, we found that subtraction problems were increasingly associated with a leftward bias by the fifth grade, such that problem solving was facilitated when the second operand was in the left visual field. In Experiment 2, we found that children can also associate addition problems with the right side of space by the fourth grade. No developmental increase in either leftward or rightward bias was observed for multiplication problems. These attentional shifts might be due to the increasing reliance on calculation procedures that involve mental movements to the left or right of a sequential representation of numbers during subtraction and addition.
Humans differ from other animal species in their unique ability to use symbols to represent numerical information. This ability is thought to emerge from the “neural recycling” of mechanisms supporting nonsymbolic magnitudes in the intraparietal sulcus (IPS), a hypothesis that has been applied to both absolute magnitudes (e.g., whole numbers) and relative magnitudes (e.g., fractions). Yet, evidence for the neuronal recycling hypothesis is inconsistent for absolute magnitudes and scarce for relative magnitudes. Here, we investigated to what extent the neural representations of absolute and relative magnitudes in symbolic and nonsymbolic formats overlap in the IPS. In a functional magnetic resonance imaging (fMRI) adaptation design, 48 adult participants were sequentially presented with lines, whole numbers, line ratios, and fractions that varied (vs. not varied) in magnitudes. Univariate analyses showed that the extent to which IPS mechanisms associated with whole numbers relied on mechanisms associated with lines depended upon participants’ arithmetic fluency. Multivariate analyses revealed that the right IPS encoded differences in format (nonsymbolic vs. symbolic) across both absolute and relative magnitudes. Therefore, IPS activity associated with magnitude processing may depend on the presentation format (nonsymbolic vs. symbolic) more than it depends on the type of magnitude (absolute vs. relative), at least for most adult participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.