Context Weakness or decreased activation of the hip abductors and external rotators has been associated with lower extremity injury, especially in females. Resisted side stepping is commonly used to address hip weakness. Whereas multiple variations of this exercise are used clinically, few data exist regarding which variations to select. Objective To investigate differences in muscle-activation and movement patterns and determine kinematic and limb-specific differences between men and women during resisted side stepping with 3 resistive-band positions. Design Controlled laboratory study. Setting Laboratory. Patients or Other Participants A total of 22 healthy adults (11 men, 11 women; age = 22.8 ± 3.0 years, height = 171.6 ± 10.7 cm, mass = 68.5 ± 11.8 kg). Intervention(s) Participants side stepped with the resistive band at 3 locations (knees, ankles, feet). Main Outcome Measure(s) We collected surface electromyography of the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) for the moving and stance limbs during the concentric and eccentric phases. We also measured trunk inclination, hip and knee flexion, and hip-abduction excursion. Results Hip-abductor activity was higher in women than in men (P ≤ .04). The pattern of TFL activity in the stance limb differed by sex. Women performed the exercise in greater forward trunk inclination (P = .009) and had greater hip excursion (P = .003). Gluteus maximus and medius activity increased when the band was moved from the knees to the ankles and from the ankles to the feet, whereas TFL activity increased only when the band was moved from the knees to the ankles. Findings were similar for both the stance and moving limbs, but the magnitudes of the changes differed. Conclusions Compared with placing the band around the ankles, placing the band around the feet for resisted side stepping elicited more activity in the gluteal muscles without increasing TFL activity. This band placement is most appropriate when the therapeutic goal is to activate the muscles that resist hip adduction and internal rotation.
Study Design Controlled laboratory study, repeated-measures design. Objectives To compare hip abductor muscle activity and hip and knee joint kinematics in the moving limb to the stance limb during resisted side-stepping and also to determine if muscle activity was affected by the posture (upright standing versus squat) used to perform the exercise. Background Hip abductor weakness has been associated with a variety of lower extremity injuries. Resisted side-stepping is often used as an exercise to increase strength and endurance of the hip abductors. Exercise prescription would benefit from knowing the relative muscle activity level generated in each limb and for different postures during the side-stepping exercise. Methods Twenty-four healthy adults participated in this study. Kinematics and surface electromyographic (EMG) data from the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) were collected as participants performed side-stepping with a resistive band around the ankle while maintaining each of 2 postures: 1) upright standing and 2) squat. Results Mean normalized EMG signal amplitude of the gluteus maximus, gluteus medius, and TFL was higher in the stance limb than the moving limb (P≤.001). Gluteal muscle activity was higher, while TFL muscle activity was lower, in the squat posture compared to the upright standing posture (P<.001). Hip abduction excursion was greater in the stance limb than in the moving limb (P<.001). Conclusions The 3 hip abductor muscles respond differently to the posture variations of side-stepping exercise in healthy individuals. When prescribing resisted side-stepping exercises, therapists should consider the differences in hip abductor activation across limbs and variations in trunk posture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.