The Pinus mugo complex is a large group of closely related mountain pines, which are an important component of the ecosystems of the most important mountain ranges, such as the Alps, Carpathians and Pyrenees. The phylogenetic relationships between taxa in this complex have been under discussion for many years. Despite the use of many different approaches, they still need to be clarified and supplemented with new data, especially those obtained with high-throughput methods. Therefore, in this study, the complete sequences of the chloroplast genomes of the three most recognized members of the Pinus mugo complex, i.e., Pinus mugo, Pinus rotundata and Pinus uncinata, were sequenced and analyzed to gain new insight into their phylogenetic relationships. Comparative analysis of their complete chloroplast genome sequences revealed several mutational hotspots potentially useful for the genetic identification of taxa from the Pinus mugo complex. Phylogenetic inference based on sixteen complete chloroplast genomes of different coniferous representatives showed that pines from the Pinus mugo complex form one distinct monophyletic group. The results obtained in this study provide new and valuable omics data for further research within the European mountain pine complex. They also indicate which regions may be useful in the search for diagnostic DNA markers for the members of Pinus mugo complex and set the baseline in the conservation of genetic resources of its endangered taxa.
The internal transcribed spacer 2 (ITS2) is one of the best-known universal DNA barcode regions. This short nuclear region is commonly used not only to discriminate taxa, but also to reconstruct phylogenetic relationships. However, the efficiency of using ITS2 in these applications depends on many factors, including the family under study. Pinaceae represents the largest family of extant gymnosperms, with many species of great ecological, economic, and medical importance. Moreover, many members of this family are representatives of rare, protected, or endangered species. A simple method for the identification of Pinaceae species based on DNA is necessary for their effective protection, authentication of products containing Pinaceae representatives, or phylogenetic inference. In this study, for the first time, we conducted a comprehensive study summarizing the legitimacy of using the ITS2 region for these purposes. A total of 368 sequences representing 71 closely and distantly related taxa of the seven genera and three subfamilies of Pinaceae were characterized for genetic variability and divergence. Intra- and interspecies distances of ITS2 sequences as well as rates of sequence identification and taxa discrimination among Pinaceae at various taxonomic levels, i.e., the species complex, genus, subfamily, and family, were also determined. Our study provides a critical assessment of the suitability of the ITS2 nuclear DNA region for taxa discrimination among Pinaceae. The obtained results clearly show that its usefulness for this purpose is limited.
The Socotra dragon`s blood tree (Dracaena cinnabari Balf.) is endemic to the island of Socotra in Yemen. This iconic species plays an essential role in the survival of associated organisms, acting as an umbrella tree. Overexploitation, overgrazing by livestock, global climate change, and insufficient regeneration mean that the populations of this valuable species are declining in the wild. Although there are many studies on the morphology, anatomy, and physiology of D. cinnabari, no genomic analysis of this endangered species has been performed so far. Therefore, the main aim of this study was to characterize the complete chloroplast sequence genome of D. cinnabari for conservation purposes. The D. cinnabari chloroplast genome is 155,371 bp with a total GC content of 37.5%. It has a quadripartite plastid genome structure composed of one large single-copy region of 83,870 bp, one small single-copy region of 18,471 bp, and two inverted repeat regions of 26,515 bp each. One hundred and thirty-two genes were annotated, 86 of which are protein-coding genes, 38 are transfer RNAs, and eight are ribosomal RNAs. Forty simple sequence repeats have also been identified in this chloroplast genome. Comparative analysis of complete sequences of D. cinnabari chloroplast genomes with other species of the genus Dracaena showed a very high conservativeness of their structure and organization. Phylogenetic inference showed that D. cinnabari is much closer to D. draco, D. cochinchinensis, and D. cambodiana than to D. terniflora, D. angustifolia, D. hokouensis, and D. elliptica. The results obtained in this study provide new and valuable omics data for further phylogenetic studies of the genus Dracaena as well as enable the protection of genetic resources of highly endangered D. cinnabari.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.