This is the first study to show differential suppression of Th1 and Th2 cytokines, with CD4(+)CD25+ regulatory T cells from birch-pollen-allergic patients being unable to down-regulate Th2, but not Th1 responses during birch-pollen season.
Migration of CD4+CD25+FOXP3+ regulatory T cells (Treg) is important for suppressing immune responses in different tissues. Previous studies show that the majority of Treg at birth express gut homing receptor α4β7 and that only few express CCR4, while the reverse pattern is found in adults. The age at which homing receptor switch occurs in vivo is not known. In this study, we show, in a prospective study of human infants from birth to 3 years of age, that homing receptor switch from α4β7 to CCR4 commences between 1 1/2 and 3 years of age and that Treg at that age also had started their switch to a memory phenotype. The majority of naive Treg express α4β7 in infants but not in adults, while the majority of memory Treg express CCR4 both infants and adults. The homing receptor expression on Treg corresponds to their actual migration properties, because Treg from cord blood migrate foremost toward the gut-associated chemokine CCL25. CD4+FOXP3+ T cell numbers increase rapidly in the circulation during the first days of life indicating conversion to suppressive Treg from CD25high Treg precursors. These findings suggest that the gut is the primary site of Treg stimulation to exogenous Ags during the first 18 mo of life and that homing receptor switch toward a more extra-intestinal phenotype occurs thereafter.
RORγt, an isoform of the retinoic acid-related orphan receptor gamma (RORc, RORγ), has been identified as the master regulator of T-helper 17 (TH 17) cell function and development, making it an attractive target for the treatment of autoimmune diseases. Validation for this target comes from antibodies targeting interleukin-17 (IL-17), the signature cytokine produced by TH 17 cells, which have shown impressive results in clinical trials. Through focused screening of our compound collection, we identified a series of N-sulfonylated benzoxazepines, which displayed micromolar affinity for the RORγ ligand-binding domain (LBD) in a radioligand binding assay. Optimization of these initial hits resulted in potent binders, which dose-dependently decreased the ability of the RORγ-LBD to interact with a peptide derived from steroid receptor coactivator 1, and inhibited the release of IL-17 secretion from isolated and cultured human TH 17 cells with nanomolar potency. A cocrystal structure of inverse agonist 15 (2-chloro-6-fluoro-N-(4-{[3-(trifluoromethyl)phenyl]sulfonyl}-2,3,4,5-tetrahydro-1,4-benzoxazepin-7-yl)benzamide) bound to the RORγ-LBD illustrated that both hydrophobic interactions, leading to an induced fit around the substituted benzamide moiety of 15, as well as a hydrogen bond from the amide NH to His479 seemed to be important for the mechanism of action. This structure is compared with the structure of agonist 25 (N-(2-fluorophenyl)-4-[(4-fluorophenyl)sulfonyl]-2,3,4,5-tetrahydro-1,4-benzoxazepin-6-amine ) and structures of other known RORγ modulators.
Retinoic acid receptor related orphan receptor γt (RORγt), has been identified as the master regulator of T17-cell function and development, making it an attractive target for the treatment of autoimmune diseases by a small-molecule approach. Herein, we describe our investigations on a series of 4-aryl-thienyl acetamides, which were guided by insights from X-ray cocrystal structures. Efforts in targeting the cofactor-recruitment site from the 4-aryl group on the thiophene led to a series of potent binders with nanomolar activity in a primary human-T17-cell assay. The observation of a DMSO molecule binding in a subpocket outside the LBD inspired the introduction of an acetamide into the benzylic position of these compounds. Hereby, a hydrogen-bond interaction of the introduced acetamide oxygen with the backbone amide of Glu379 was established. This greatly enhanced the cellular activity of previously weakly cell-active compounds. The best compounds combined potent inhibition of IL-17 release with favorable PK in rodents, with compound 32 representing a promising starting point for future investigations.
Inverse agonists of the nuclear receptor
RORC2 have been widely
pursued as a potential treatment for a variety of autoimmune diseases.
We have discovered a novel series of isoindoline-based inverse agonists
of the nuclear receptor RORC2, derived from our recently disclosed
RORC2 inverse agonist 2. Extensive structure–activity
relationship (SAR) studies resulted in AZD0284 (20),
which combined potent inhibition of IL-17A secretion from primary
human TH17 cells with excellent metabolic stability and
good PK in preclinical species. In two preclinical in vivo studies, compound 20 reduced thymocyte numbers in mice
and showed dose-dependent reduction of IL-17A containing γδ-T
cells and of IL-17A and IL-22 RNA in the imiquimod induced inflammation
model. Based on these data and a favorable safety profile, 20 was progressed to phase 1 clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.