SUMMARY Hypoxia-inducible transcription factor-1 (HIF-1) is a master regulator of hypoxia-induced gene responses. To find out whether HIF-1 function is involved in gene expression changes associated with temperature acclimation as well as in hypoxia adaptation in poikilotherms, we studied HIF-1 DNA binding activity and HIF-1α expression in normoxia and during hypoxia (0.7 mg l–1 O2) in crucian carp at temperatures of 26, 18 and 8°C. Temperature had a marked influence on HIF-1 in normoxia. Although HIF-1α mRNA levels remained unaltered, cold acclimation (8°C)increased HIF-1α protein amounts in the liver, gills and heart and HIF-1 DNA binding activity in the heart, gills and kidney of crucian carp by two- to threefold compared to warm acclimated fish (26°C). In the heart and kidney HIF-1 activity was already significantly increased in the 18°C acclimated fish. Temperature also affected hypoxic regulation of HIF-1. Although hypoxia initially increased amounts of HIF-1α protein in all studied tissues at every temperature, except for liver at 18°C, HIF-1 activity increased only in the heart of 8°C acclimated and in the gills of 18°C acclimated fish. At 8°C HIF-1α mRNA levels increased transiently in the gills after 6 h of hypoxia and in the kidney after 48 h of hypoxia. In the gills at 26°C HIF-1α mRNA levels increased after 6 h of hypoxia and remained above normoxic levels for up to 48 h of hypoxia. These results show that HIF-1 is involved in controlling gene responses to both oxygen and temperature in crucian carp. No overall transcriptional control mechanism has been described for low temperature acclimation in poikilotherms, but the present results suggest that HIF-1 could have a role in such regulation. Moreover, this study highlights interaction of the two prime factors defining metabolism,temperature and oxygen, in the transcriptional control of metabolic homeostasis in animals.
Hypoxia inducible factor 1 alpha (HIF-1alpha) initiates expression of a wide variety of genes, some of which are involved in apoptosis and cell cycle arrest. We have previously shown that crucian carp increases its respiratory surface area 7.5-fold in response to hypoxia. This change is due to apoptosis and cell cycle arrest in specific parts of its gills. Here we have characterized crucian carp HIF-1alpha, and measured mRNA, protein and DNA binding levels during hypoxia exposure in crucian carp gills. We have also measured an HIF-1alpha-induced gene, the inducible nitric oxide synthase (iNOS), which has the ability to initiate apoptosis and cell cycle arrest. Crucian carp HIF-1alpha was found to have all critical domains known to be important for function. Comparison of the peptide sequence with other species indicated high similarity with other cyprinid fish, but a pronounced variation compared to the salmonid, rainbow trout. Further, we found HIF-1alpha protein to be stabilized during hypoxia. Further, HIF-1alpha was often present in normoxia, and showed marked individual weight-dependent variation. We found no alteration of iNOS mRNA levels during hypoxia exposure. These findings suggest HIF-1alpha involvement in hypoxia-induced change of respiratory surface area in crucian carp gills. However, its activity does not seem to be mediated through iNOS.
We studied the metabolic rate, cellular energetic state, hypoxia-inducible factor-1 (HIF-1) activation, and expression of enzymes involved in energy metabolism using rainbow trout (Oncorhynchus mykiss) hepatocytes over the oxygen range from 21 to 1 kPa. Oxygen dependence of these factors was assessed by gradually reducing oxygen supply to cells from 21 kPa to 10, 5, 2, and 1 kPa. Moreover, time course experiments for up to 20 h at oxygen tensions of 1 and 2 kPa were carried out. Reduction of oxygen from 21 kPa to 10, 5, 2, and 1 kPa decreased metabolic rate of the cells by 14, 24, 37, and 46%, respectively. This response was instantaneous and fully reversible upon reoxygenation. Cellular ATP content and the expression of all mRNAs studied decreased when oxygen was reduced from 21 to 5 and 2 kPa. The lowest ATP levels, approximately 43% of the initial value, were measured at 5 kPa of oxygen, whereas the reduction in mRNA amounts was most pronounced at 2 kPa. At 1 kPa oxygen tension, both ATP content and mRNA amounts returned to normoxic (21 kPa) levels with a concomitant activation of HIF-1, indicating reorganization of energy metabolism in adaptation of cells to low oxygen supply. These results show that oxygen has a direct regulatory effect on metabolism of trout hepatocyte cultures, supporting the view that oxygen has a profound role in metabolic regulation in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.