p‐Phenylenediamine can be obtained as the dihydrate, C6H8N2·2H2O, (I), and in its anhydrous form, C6H8N2, (II). The asymmetric unit of (I) contains one half of the p‐phenylenediamine molecule lying about an inversion centre and two halves of water molecules, one lying on a mirror plane and the other lying across a mirror plane. In (II), the asymmetric unit consists of one molecule in a general position and two half molecules located around inversion centres. In both structures, the p‐phenylenediamine molecules are arranged in layers stabilized by N—H...π interactions. The diamine layers in (I) are isostructural with half of the layers in (II). On dehydration, crystals of (I) transform to (II). Comparison of their crystal structures suggests the most plausible mechanism of the transformation process which requires, in addition to translational motion of the diamine molecules, in‐plane rotation of every fourth p‐phenylenediamine molecule by ca 60°. A search of the Cambridge Structural Database shows that the formation of hydrates by aromatic amines should be considered exceptional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.