Inflammatory processes involving altered microglial activity may play a relevant role in the pathophysiology of depressive disorders. Glial fibrillary acidic protein (GFAP) and calcium-binding protein S100B are considered microglial markers. To date, their role has been studied in the serum and tissue material of patients with unipolar depression but not in the cerebrospinal fluid (CSF). Therefore, the aim of the current study was to examine GFAP and S100B levels in the CSF of patients with major depression to better understand their role in affective disorders. In this retrospective study, 102 patients with unipolar depression and 39 mentally healthy controls with idiopathic intracranial hypertension were investigated. GFAP and S100B levels were measured using commercially available ELISA kits. CSF routine parameters were collected during routine clinical care. The mean values of GFAP and S100B were compared using age (and sex) corrected ANOVAs. Matched subgroups were analyzed by using an independent sample t-test. In addition, correlation analyses between GFAP/S100B levels and CSF routine parameters were performed within the patient group. Patients with unipolar depression had significantly higher levels of GFAP than controls (733.22 pg/ml vs. 245.56 pg/ml, p < 0.001). These results remained significant in a sub-analysis in which all controls were compared with patients suffering from depression matched 1:1 by age and sex (632.26 pg/ml vs. 245.56 pg/ml, p < 0.001). Levels of S100B did not differ significantly between patients and controls (1.06 ng/ml vs. 1.17 ng/ml, p = 0.385). GFAP levels correlated positively with albumin quotients (p < 0.050), S100B levels correlated positively with white blood cell counts (p = 0.001), total protein concentrations (p < 0.001), and albumin quotients (p = 0.001) in the CSF. The significance of the study is limited by its retrospective and open design, methodological aspects, and the control group with idiopathic intracranial hypertension. In conclusion, higher GFAP levels in patients with depression may be indicative of altered microglia activity, especially in astrocytes, in patients with unipolar depression. In addition, correlation analyses support the idea that S100B levels could be related to the integrity of the blood–brain/CSF barrier. Further multimodal and longitudinal studies are necessary to validate these findings and clarify the underlying biological processes.
Immunological explanatory approaches are becoming increasingly important in schizophrenia research. In this context, the function of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) plays an essential role. Different adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), are key elements in sustaining the integrity of the BBB and BCSFB. The objectives of this study were to (1) compare the levels of different cell adhesion molecules in the CSF of patients with schizophrenia spectrum disorders to those of patients with unipolar depression and (2) analyze their association with the established markers of the BBB/BCSFB function (CSF total protein and albumin quotient (AQ)). Therefore, a total of 40 patients with schizophrenia spectrum disorder and 39 age- and sex-matched control patients with unipolar depression were analyzed. The levels of soluble ICAM-1 (s-ICAM-1), soluble VCAM-1 (s-VCAM-1), and plasminogen activator inhibitor 1 (PAI-1) in the CSF were measured using a magnetic bead multiplexing immunoassay. The levels of sICAM-1 (p < 0.001), sVCAM-1 (p < 0.001), and PAI-1 (p < 0.001) in the CSF were significantly higher in patients with schizophrenia spectrum disorder than in patients with unipolar depression. In addition, a significant correlation of sVCAM-1 levels with total protein concentrations (r = 0.454, p = 0.003) and AQ levels (r = 0.512, p = 0.001) in patients with schizophrenia spectrum disorders was observed. The results revealed that sICAM-1 and sVCAM-1 levels in the CSF were higher in patients with schizophrenia spectrum disorder than in those with depression. These circulating signaling molecules may indicate endothelial dysfunction causing impaired BBB/BCSFB function in patients with schizophrenia spectrum disorders. Consistent with this view, a highly significant correlation of sVCAM-1 with CSF protein and AQs was detected. Upregulation of these cell adhesion molecules might be indicative of a proinflammatory immune response underlying the BBB/BCSFB disturbance in a subgroup of patients with schizophrenia spectrum disorders. The significance of the study is limited by its retrospective research design and by the absence of a healthy control group. The assay used was not previously established for the measurement of CSF. Further translational and controlled studies of the role of different cell adhesion molecules in schizophrenia are needed.
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by difficulties with social interaction, repetitive behavior, and additional features, such as special interests. Its precise etiology is unclear. Recently, immunological mechanisms, such as maternal autoantibodies/infections, have increasingly been the subject of discussion. Cerebrospinal fluid (CSF) investigations play a decisive role in the detection of immunological processes in the brain. This study therefore retrospectively analyzed the CSF findings of adult patients with ASD. CSF basic measures (white blood cell count, total protein, albumin quotient, immunoglobulin G (IgG) index, and oligoclonal bands) and various antineuronal antibody findings of 36 adult patients with ASD, who had received lumbar puncture, were compared with an earlier described mentally healthy control group of 39 patients with idiopathic intracranial hypertension. CSF protein concentrations and albumin quotients of patients with ASD were significantly higher as compared to controls (age corrected: p = 0.003 and p = 0.004, respectively); 17% of the patients with ASD showed increased albumin quotients. After correction for age and gender, the group effect for total protein remained significant (p = 0.041) and showed a tendency for albumin quotient (p = 0.079). In the CSF of two ASD patients, an intrathecal synthesis of anti-glutamate decarboxylase 65 (GAD65) antibodies was found. In total, more of the ASD patients (44%) presented abnormal findings in CSF basic diagnostics compared to controls (18%; p = 0.013). A subgroup of the patients with adult ASD showed indication of a blood–brain barrier dysfunction, and two patients displayed an intrathecal synthesis of anti-GAD65 antibodies; thus, the role of these antibodies in patients with ASD should be further investigated. The results of the study are limited by its retrospective and open design. The group differences in blood–brain barrier markers could be influenced by a different gender distribution between ASD patients and controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.