Habitual loading patterns of domesticated animals may differ due to human influence from their wild counterparts. In the early stages of human-reindeer interaction, cargo and draft use was likely important, as well as corralling tame reindeer. This may result to changes in loading as increased (working) or decreased (captive) loading, as well as foraging patterns (digging for lichen from under the snow versus fed working and/or captive reindeer). Our aim is to study whether differences in activity modify variation in bone cross-sectional properties and external dimensions. Our material consists of donated skeletons of modern reindeer: 20 working reindeer (19 racing and one draft), 24 zoo reindeer, and sample of 78 free-ranging/wild reindeer as a reference group. We used general linear modelling to first establish the total variation in cross-sectional properties among wild and free-ranging reindeer, and then to infer how differences in loading modify observed variation among zoo and working reindeer. According to our results, direction of greater bone quantity as well as external dimensions in of radioulna of female reindeer differs from female reference group, likely relating to foraging behavior. External dimensions of humerus differ in working and zoo male reindeer compared to male reference group. Increased robusticity of long bones, especially of tibia among working male reindeer, may indicate increased loading, and increased cortical area of long bones may indicate sedentary lifestyle among female reindeer. The results of this study can be used to understand early stages of reindeer domestication by observing reindeer activity patterns from archaeological material.
Rangifer tarandus, the northern species including both reindeer and caribou, is a pillar of northern ecosystems and the lives of northern peoples. As the only domestic cervid, reindeer are important not only to the herders and hunters who presently interact with them, but also to zooarchaeologists and palaeontologists tracing their histories. Unfortunately, limited anatomical information on Rangifer tarandus muscles is available beyond descriptions of the large muscle groups. The lower limb and hoof in particular is poorly documented. This is problematic, as this important body part has the potential to be informative in zooarchaeological analyses of habitual activity, especially in regards to historical animal health, movement, and habitual activity. Better understanding of the hoof can additionally be useful to herders and veterinarians seeking to provide veterinary care for living animals. This study has used dissections and comparisons of the reindeer hoof with other domestic ungulates to document both the common and unique structures in Rangifer tarandus hooves, including the presence and attachment points of these structures. As these structures have proved unique, especially in regards to the dewclaw, it is important that other ungulates not be used exclusively in the analysis of Rangifer tarandus remains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.