Enzymatic hydrolysis of bacterial microcrystalline cellulose was performed with the thermophile enzyme system of Thermobifida fusca Cel5A (a classical endocellulase), Cel6B (a classical exocellulase), Cel9A (a processive endoglucanase), and a synergistic mixture of endo- and exocellulases. Different concentrations of enzymes were used to vary the extent of hydrolysis. Following standardization, the concentration of cellulose was directly correlated to the absorbance of the cellulose signals. Crystallinity indexes (Lateral Order Index (LOI), Total Crystallinity Index, Hydrogen Bonding Index), allomorphic composition, conversion of specific atomic bonds (including the β-glucosidic bonds) were extracted from the spectral data obtained by QHT-FTIR. By quantifying the disruption of the H-bonding in complement to the sugar production, a more dynamic and complex picture of the role of cellulases in the hydrolysis of cellulose was demonstrated. The disruption of the H-bonding within the cellulose matrix appears as a quantifiable activity of the enzymes which was not correlated with the production of sugars in solution. The results also demonstrate that Cel9A activities from the cellulose transformation standpoint were partially similar to the activities of the synergistic mixture. In addition, Cel9A preferentially degraded the I(α) fraction of the crystalline cellulose while the Cel5A and Cel6B synergistic mixture preferentially degraded the I(β) fraction.
The study of enzymatic reactions through fluorescence spectroscopy requires the use of bright, functional fluorescent molecules. In the case of proteins, labeling with fluorescent dyes has been carried out through covalent reactions with specific amino acids. However, these reactions are probabilistic and can yield mixtures of unlabeled and labeled enzymes with catalytic activities that can be modified by the addition of fluorophores. To have meaningful interpretations of results from the study of labeled enzymes, it is then necessary to reduce the variability in physical, chemical, and biological characteristics of the labeled products. In this paper, a solid phase labeling protocol is described as an advantageous alternative to free solution labeling of cellulose-binding proteins and is applied to tag cellulases with three different fluorophores. The products from the labeling reactions were purified to remove the unreacted dye and separate labeled and unlabeled enzymes. Characterization of the catalytic and spectroscopic properties of the isolated labeled species confirmed that highly homogeneous populations of labeled cellulases can be achieved. The protocol for the separation of labeled products is applicable to any mixture of labeled proteins, making this an attractive methodology for the production of labeled proteins suitable for single molecule fluorescence spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.