A successful unified pharmacophore/receptor model which has guided the synthesis of subtype selective compounds is reviewed in light of recent developments both in ligand synthesis and structural studies of the binding site itself. The evaluation of experimental data in combination with a comparative model of the alpha1beta2gamma2 GABA(A) receptor leads to an orientation of the pharmacophore model within the Bz BS. Results not only are important for the rational design of selective ligands, but also for the identification and evaluation of possible roles which specific residues may have within the benzodiazepine binding pocket.
Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription–polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.
Pentamethyl-6-chromanol (PMCol), a chromanol-type compound related to vitamin E, was proposed as an anticancer agent with activity against androgen-dependent cancers. In repeat dose-toxicity studies in rats and dogs, PMCol caused hepatotoxicity, nephrotoxicity, and hematological effects. The objectives of this study were to determine the mechanisms of the observed toxicity and identify sensitive early markers of target organ injury by integrating classical toxicology, toxicogenomics, and metabolomic approaches. PMCol was administered orally to male Sprague-Dawley rats at 200 and 2000 mg/kg daily for 7 or 28 days. Changes in clinical chemistry included elevated alanine aminotransferase, total bilirubin, cholesterol and triglycerides-indicative of liver toxicity that was confirmed by microscopic findings (periportal hepatocellular hydropic degeneration and cytomegaly) in treated rats. Metabolomic evaluations of liver revealed time- and dose-dependent changes, including depletion of total glutathione and glutathione conjugates, decreased methionine, and increased S-adenosylhomocysteine, cysteine, and cystine. PMCol treatment also decreased cofactor levels, namely, FAD and increased NAD(P)+. Microarray analysis of liver found that differentially expressed genes were enriched in the glutathione and cytochrome P450 pathways by PMCol treatment. Reverse transcription-polymerase chain reaction of six upregulated genes and one downregulated gene confirmed the microarray results. In conclusion, the use of metabolomics and toxicogenomics demonstrates that chronic exposure to high doses of PMCol induces liver damage and dysfunction, probably due to both direct inhibition of glutathione synthesis and modification of drug metabolism pathways. Depletion of glutathione due to PMCol exposure ultimately results in a maladaptive response, increasing the consumption of hepatic dietary antioxidants and resulting in elevated reactive oxygen species levels associated with hepatocellular damage and deficits in liver function.
Selective modulation of specific benzodiazepine receptor (BzR) gamma amino butyric acid-A (GABAA) receptor ion channels has been identified as an important method for separating out the variety of pharmacological effects elicited by BzR-related drugs. Importantly, it has been demonstrated that both α2β(2/3)γ2 (α2BzR) and α3BzR (and/or α2/α3) BzR subtype selective ligands exhibit anxiolytic effects with little or no sedation. Previously we have identified several such ligands; however, three of our parent ligands exhibited significant metabolic liability in rodents in the form of a labile ester group. Here eight analogs are reported which were designed to circumvent this liability by utilizing a rational replacement of the ester moiety based on medicinal chemistry precedents. In a metabolic stability study using human liver microsomes, four compounds were found to undergo slower metabolic transformation, as compared to their corresponding ester analogs. These compounds were also evaluated in in vitro binding as well as efficacy assays. Additionally, bioisostere 11 was evaluated in a rodent model of anxiety. It exhibited anxiolytic activity at doses of 10 and 100 mg/kg and was devoid of sedative properties.
Toxicity studies in Sprague-Dawley rats and radiation dosimetry studies in Formosa Rock monkeys suggested that 4-[(18)F]-ADAM is safe for use in human PET imaging studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.