Self-assembly of
biomembranes results from the intricate interactions
between water and the lipids’ hydrophilic head groups. Therefore,
the lipid–water interplay strongly contributes to modulating
membrane architecture, lipid diffusion, and chemical activity. Here,
we introduce a new method of obtaining dehydrated, phase-separated,
supported lipid bilayers (SLBs) solely by controlling the decrease
of their environment’s relative humidity. This facilitates
the study of the structure and dynamics of SLBs over a wide range
of hydration states. We show that the lipid domain structure of phase-separated
SLBs is largely insensitive to the presence of the hydration layer.
In stark contrast, lipid mobility is drastically affected by dehydration,
showing a 6-fold decrease in lateral diffusion. At the same time,
the diffusion activation energy increases approximately 2-fold for
the dehydrated membrane. The obtained results, correlated with the
hydration structure of a lipid molecule, revealed that about six to
seven water molecules directly hydrating the phosphocholine moiety
play a pivotal role in modulating lipid diffusion. These findings
could provide deeper insights into the fundamental reactions where
local dehydration occurs, for instance during cell–cell fusion,
and help us better understand the survivability of anhydrobiotic organisms.
Finally, the strong dependence of lipid mobility on the number of
hydrating water molecules opens up an application potential for SLBs
as very precise, nanoscale hydration sensors.
In the report we demonstrate how, using laser light, effectively trap gas bubbles and transport them through a liquid phase to a desired destination by shifting the laser beam position. The physics underlying the effect is complex but quite general as it comes from the limited to two-dimension, well-known, Marangoni effect. The experimental microscope-based system consists of a thin layer of liquid placed between two glass plates containing a dye dissolved in a solvent and a laser light beam that is strongly absorbed by the dye. This point-like heat source locally changes surface tension of nearby liquid-air interface. Because of temperature gradients a photo-triggered Marangoni flows are induced leading to self-amplification of the effect and formation of large-scale whirls. The interface is bending toward beam position allowing formation of a gas bubble upon suitable beam steering. Using various techniques (employing luminescent particles or liquid crystals), we visualize liquid flows propelled by the tangential to interface forces. This helped us to understand the physics of the phenomenon and analyze accompanying effects leading to gas bubble trapping. The manipulation of sessile droplets moving on the glass surface induced via controlled with laser light interface bending (i.e. “droplet catapult”) is demonstrated as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.