The 3C-like proteinase (3CL(pro)) of severe acute respiratory syndrome (SARS) coronavirus is a key target for structure-based drug design against this viral infection. The enzyme recognizes peptide substrates with a glutamine residue at the P1 site. A series of keto-glutamine analogues with a phthalhydrazido group at the alpha-position were synthesized and tested as reversible inhibitiors against SARS 3CL(pro). Attachment of tripeptide (Ac-Val-Thr-Leu) to these glutamine-based "warheads" generated significantly better inhibitors (4a-c, 8a-d) with IC(50) values ranging from 0.60 to 70 microM.
Abstract. Shafaati M, Olin M, Bå vner A, Pettersson H, Rozell B, Meaney S, Parini P, Björkhem I (Karolinska University Hospital Huddinge, Huddinge, Sweden; Dublin Institute of Technology, Dublin, Ireland). Enhanced production of 24S-hydroxycholesterol is not sufficient to drive liver X receptor target genes in vivo. J Intern Med 2011; 270: 377-387.Background. Oxysterols such as 24S-hydroxycholesterol (OHC) and 27-OHC are intermediates of cholesterol excretion pathways. In addition, they are putative endogenous agonists of the liver X receptor (LXR) class of nuclear hormone receptors and are thought to be important mediators of cholesterol-dependent gene regulation. 24S-OHC is one of the most efficient endogenous LXR agonists known and is present in the brain and in the circulation at relatively high levels.
The 3C-like protease (3CLpro), which controls the severe acute respiratory syndrome (SARS) coronavirus replication, has been identified as a potential target for drug design in the treatment of SARS. A series of tetrapeptide phthalhydrazide ketones, pyridinyl esters, and their analogs have been designed, synthesized, and evaluated as potential SARS 3CLpro inhibitors. Some pyridinyl esters are identified as very potent inhibitors, with IC50 values in the nanomolar range (50-65 nM). Electrospray mass spectrometry indicates a mechanism involving acylation of the active site cysteine thiol for this class of inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.