Three novel Xe-containing organic compounds, HXeCCH, HXeCC (open-shell species), and HXeCCXeH, are identified using infrared absorption spectroscopy. They are prepared in a low-temperature Xe matrix using UV photolysis of acetylene and subsequent annealing at 40-45 K. The experimental observations are supported by extensive ab initio calculations. This work demonstrates a new way to activate the H-Ctbd1;C- group without use of XeF(2), which can extend the range of organoxenon compounds.
An organic molecule containing krypton, HKrCCH, is reported. The preparation of HKrCCH includes 193-nm photolysis of H2C2/Kr solid mixtures at 8 K and subsequent thermal mobilization of hydrogen atoms at >/=30 K. The identification is based on infrared absorption spectroscopy and supported by ab initio calculations which show ionic and covalent contributions to the bonding. We believe that a series of similar organokrypton molecules can be prepared as computationally demonstrated for HKrC4H and HKrC3H3. These results feature a generally novel way for activating chemically the H-CC- group, which can find practical applications of the krypton catalysis.
Theoretical and matrix-isolation studies of intermolecular complexes of HXeOH with water molecules are presented. The structures and possible decomposition routes of the HXeOH-(H(2)O)(n)(n = 0, 1, 2, 3) complexes are analyzed theoretically. It is concluded that the decay of these metastable species may proceed through the bent transition states (TSs), leading to the global minima on the respective potential energy surfaces, Xe + (H(2)O)(n+1). The respective barrier heights are 39.6, 26.6, 11.2, and 0.4 kcal/mol for n = 0, 1, 2, and 3. HXeOH in larger water clusters is computationally unstable with respect to the bending coordinate, representing the destabilization effect. Another decomposition channel of HXeOH-(H(2)O)(n), via a linear TS, leads to a direct break of the H-Xe bond of HXeOH. In this case, the attached water molecules stabilize HXeOH by strengthening the H-Xe bond. Due to the stabilization, a large blue shift of the H-Xe stretching mode upon complexation of HXeOH with water molecules is featured in calculations. On the basis of this computational result, the IR absorption bands at 1681 and 1742 cm(-1) observed after UV photolysis and annealing of multimeric H(2)O/Xe matrixes are assigned to the HXeOH-H(2)O and HXeOH-(H(2)O)(2) complexes. These bands are blue-shifted by 103 and 164 cm(-1) from the known monomeric HXeOH absorption.
New organic rare-gas compounds, HRgC4H (Rg = Kr or Xe), are identified in matrix-isolation experiments supported by ab initio calculations. These compounds are the largest molecules among the known rare-gas hydrides. They are prepared in low-temperature rare-gas matrixes via UV photolysis of diacetylene and subsequent thermal mobilization of H atoms at approximately 30 and 45 K for Kr and Xe, respectively. The strongest IR absorption bands of the HRgC4H molecules are the H-Rg stretches with the most intense components at 1290 cm(-1) for HKrC4H and at 1532 cm(-1) for HXeC4H, and a number of weaker absorptions (C-H stretching, C-C-C bending, and C-C-H bending modes) are also found in agreement with the theoretical predictions. As probably the most important result, the IR absorption spectra indicate some further stabilization of the HRgC4H molecules as compared with the corresponding HRgC2H species identified recently (Khriachtchev et al. J. Am. Chem. Soc. 2003, 125, 4696 and Khriachtchev et al. J. Am. Chem. Soc. 2003, 125, 6876). The computational energetic results support this trend. HXeC4H is predicted to be 2.5 eV lower in energy than H + Xe + C4H, which is approximately 1 eV larger than the corresponding value for HXeC2H. We expect that the larger molecules HRgC6H and HRgC8H are even more stable and the HRgC2nH species are good candidates for bulk organic rare-gas material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.