The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically important mutualistic associations such as mycorrhizae and lichens have evolved in this group, which are regarded as key innovations that supported the evolution of land plants. Only a few attempts have been made to date the origin of Ascomycota lineages by using molecular clock methods, which is primarily due to the lack of satisfactory fossil calibration data. For this reason we have evaluated all of the oldest available ascomycete fossils from amber (Albian to Miocene) and chert (Devonian and Maastrichtian). The fossils represent five major ascomycete classes (Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes, and Lecanoromycetes). We have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) from a total of 145 taxa representing most groups of the Ascomycota and utilized fossil calibration points solely from within the ascomycetes to estimate divergence times of Ascomycota lineages with a Bayesian approach. Our results suggest an initial diversification of the Pezizomycotina in the Ordovician, followed by repeated splits of lineages throughout the Phanerozoic, and indicate that this continuous diversification was unaffected by mass extinctions. We suggest that the ecological diversity within each lineage ensured that at least some taxa of each group were able to survive global crises and rapidly recovered.
f Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P ؍ 0.002], Fe [P ؍ 0.003], and P [P ؍ 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands.
Resin protects wounded trees from microbial infection, but also provides a suitable substrate for the growth of highly specialized fungi. Chaenothecopsis proliferatus is described growing on resin of Cunninghamia lanceolata from Hunan Province, China. The new fungus is compared with extant species and two new fossil specimens from Eocene Baltic and Oligocene Bitterfeld ambers. The Oligocene fossil had produced proliferating ascomata identical to those of the newly described species and to other extant species of the same lineage. This morphology may represent an adaptation to growing near active resin flows: the proliferating ascomata can effectively rejuvenate if partially overrun by fresh, sticky exudate. Inward growth of fungal hyphae into resin has only been documented from Cenozoic amber fossils suggesting comparatively late occupation of resin as substrate by fungi. Still, resinicolous Chaenothecopsis species were already well adapted to their special ecological niche by the Eocene, and the morphology of these fungi has since remained remarkably constant.
The new species Chaenothecopsis khayensis (Ascomycota, Mycocaliciaceae) is described from Ghana, western Africa, on the resin of Khaya anthotheca and K. ivorensis. The species is distinctive in forming asci without crosiers and in possessing ascospores that are faintly longitudinally striate. Analysis of large subunit rDNA gene sequences positioned this species within a clade corresponding to the Mycocaliciales and identified its closest relative as Sphinctrina leucopoda. Chaenothecopsis khayensis occurs commonly on resin exuding from trees damaged by the larvae of the mahogany shoot borer (Hypsipyla sp.), and we discuss the possible ecological relationship between the fungus and these moths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.