Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP)-marked C. albicans strains. We found that a carbohydrate starvation response, as indicated by up-regulation of glyoxylate cycle genes, was only induced upon phagocytosis of the fungus. Similarly, the nitrosative stress response was only observed in internalised fungal cells. In contrast, the response to oxidative stress was observed in both phagocytosed and non-phagocytosed fungal cells, indicating that oxidative stress is imposed both intra- and extracellularly. We assessed the contributions of carbohydrate starvation, oxidative and nitrosative stress as antifungal activities by analysing the resistance to neutrophil killing of C. albicans mutants lacking key glyoxylate cycle, oxidative and nitrosative stress genes. We found that the glyoxylate cycle plays a crucial role in fungal resistance against neutrophils. The inability to respond to oxidative stress (in cells lacking superoxide dismutase 5 or glutathione reductase 2) renders C. albicans susceptible to neutrophil killing, due to the accumulation of reactive oxygen species (ROS). We also show that neutrophil-derived nitric oxide is crucial for the killing of C. albicans: a yhb1Δ/Δ mutant, unable to detoxify NO•, was more susceptible to neutrophils, and this phenotype was rescued by the nitric oxide scavenger carboxy-PTIO. The stress responses of C. albicans to neutrophils are partially regulated via the stress regulator Hog1 since a hog1Δ/Δ mutant was clearly less resistant to neutrophils and unable to respond properly to neutrophil-derived attack. Our data indicate that an appropriate fungal response to all three antifungal activities, carbohydrate starvation, nitrosative stress and oxidative stress, is essential for full wild type resistance to neutrophils.
Post-translational modification by the ubiquitin-like protein SUMO is often regulated by cellular signals that restrict the modification to appropriate situations. Nevertheless, many SUMO-specific ligases do not exhibit much target specificity, and-compared with the diversity of sumoylation substrates-their number is limited. This raises the question of how SUMO conjugation is controlled in vivo. We report here an unexpected mechanism by which sumoylation of the replication clamp protein, PCNA, from budding yeast is effectively coupled to S phase. We find that loading of PCNA onto DNA is a prerequisite for sumoylation in vivo and greatly stimulates modification in vitro. To our surprise, however, DNA binding by the ligase Siz1, responsible for PCNA sumoylation, is not strictly required. Instead, the stimulatory effect of DNA on conjugation is mainly attributable to DNA binding of PCNA itself. These findings imply a change in the properties of PCNA upon loading that enhances its capacity to be sumoylated.
The spindle assembly checkpoint inhibits anaphase until all chromosomes have become attached to the mitotic spindle. A complex between the checkpoint proteins Mad1 and Mad2 provides a platform for Mad2:Mad2 dimerization at unattached kinetochores, which enables Mad2 to delay anaphase. Here, we show that mutations in Bub1 and within the Mad1 C-terminal domain impair the kinetochore localization of Mad1:Mad2 and abrogate checkpoint activity. Artificial kinetochore recruitment of Mad1 in these mutants co-recruits Mad2; however, the checkpoint remains non-functional. We identify specific mutations within the C-terminal head of Mad1 that impair checkpoint activity without affecting the kinetochore localization of Bub1, Mad1 or Mad2. Hence, Mad1 potentially in conjunction with Bub1 has a crucial role in checkpoint signalling in addition to presenting Mad2.
The eukaryotic spindle assembly checkpoint (SAC) delays anaphase in the presence of chromosome attachment errors. Bub3 has been reported to be required for SAC activity in all eukaryotes examined so far. We find that Bub3, unlike its binding partner Bub1, is not essential for the SAC in fission yeast. As Bub3 is needed for the efficient kinetochore localization of Bub1, and of Mad1, Mad2 and Mad3, this implies that most SAC proteins do not need to be enriched at the kinetochores for the SAC to function. We find that Bub3 is also dispensable for shugoshin localization to the centromeres, which is the second known function of Bub1. Instead, Bub3, together with Bub1, has a specific function in promoting the conversion from chromosome mono-orientation to bi-orientation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.