Roots of Phleum pratense L. were photographed during both vertical growth and gravitropic bending, and positions of anticlinal rhizodermal cell walls were digitized on the physically upper and lower flanks of the root in the curvature plane. By using B-splines, arc lengths of these positions, i.e. distances along the root surface, values of curvature, and relative elemental rates of elongation were estimated. The whole graviresponse can be divided into phases according to growth-rate values: (i) an increase of rates on the upper side of the root and a decrease on the lower side during the first 1-1 1/2 h after the root has been moved from the vertical to a horizontal position, (ii) a transient equality of the rates on both sides, (iii) 2-3 h after the beginning of graviresponse, the growth gradient is inverted, and (iv) finally, after about 4 h, the growth rates of both flanks are approximately equal again. Curvature begins 15-20 min after horizontal placement of the root. During the first 2 h of graviresponse, plots of curvature versus arc length show one maximum value. After 2-2 1/2 h, two maximum values can be observed, the apical one near the root tip always keeping the same distance from the tip, the other one drifting basipetally relative to the growing tip. By evaluating photographs of high magnification, a group of six rhizodermal cells on each side of the root was identified which are the first cells showing gravitropic bending. These cells are located at the beginning of the elongation zone, enclosing the region 480-680 micrometers from the root tip. These cells might be target cells for a signal which the statenchyma, the site of graviperception, sends to the reacting zone of gravicurvature.
The extracellular proton activity along primary roots of Phleum pratense L. was measured using proton-selective microelectrodes. Removal of the root cap caused a reduction of the proton influx in the transitional region between the meristem and the apical elongation zone of the vertical root and inhibited the development of pH differences between the physically upper and lower flanks of the gravistimulated root. Disruption of the actin filament system of the root with 5 mmol m-3 cytochalasin D did not result in an altered proton flux and pH pattern compared with untreated vertical control roots, but inhibited the gravity-induced development of pH differences between the physically upper and lower root flanks as well as gravitropic curvature. These results provide evidence that pH changes following gravistimulation are induced by a signal transmitted from the root cap and that the actin filament system is involved in the gravity perception/transduction mechanism.
Roots have the ability to change the direction of their forward growth. Sometimes these directional changes are rapid, as in mutations, or they are slower, as in tropisms. The gravitational force is always present and roots have an efficient graviperception mechanism which enables them to initiate gravitropic movements. In trying to model and simulate the course of gravitropic root movements with a view to analyse the component processes, the following aspects of the plant's interaction with gravity have been considered: (1) The level of organization (organism, organ, cell) at which the movement process is expressed; (2) whether the gravity stimulation event is dynamic or static (i.e. whether or not physiologically significant displacements take place with respect to the gravity vector); (3) the sub-systems involved in movement and the processes which they regulate; (4) the mathematical characterization of the relevant sub-systems. A further allied topic is the nature of nutational movements and whether they are linked with gravitropic movements in some way. In considering how they can best be modelled, two types of nutational movements are proposed: stochastic nutation and circumnutation. Most, if not all, natural movements developed in response to static gravistimulation can be viewed as gravimorphisms. This applies at the levels of cell, organ and organism. However, when a system at any one of these levels experiences dynamic gravistimulation, because of its inherent homeostatic properties, it is induced to regenerate a state similar to that previously held. Thus, gravitropism is a regenerative gravimorphic process at the level of the organ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.