Negative species co‐occurrence patterns have long intrigued ecologists because of their potential link to competition. Although manipulative field experiments have consistently revealed evidence of competition in natural communities, there is little evidence that this competition produces negative co‐occurrence patterns. Evidence does suggest that abiotic variation, dispersal limitation and herbivory can contribute to patterns of negative co‐occurrence among species; it is possible these influences have obscured a link with competition. Here, we test for a connection between negative co‐occurrence and competition by examining a small‐scale, relatively homogeneous old‐field plant community where the influence of abiotic variation was likely to be minimal and we accounted for the impact of herbivory with an herbivore exclosure treatment. Using three years of data (two biennial periods), we tested whether negatively co‐occurring pairs of species, when occasionally found together, experienced asymmetric abundance decline more frequently than positively co‐occurring pairs, for which there is no such expectation. We found no evidence that negatively co‐occurring pairs consistently suffered asymmetric abundance decline more frequently than positively co‐occurring pairs, providing no evidence that competition is a primary driver of negative co‐occurrence patterns in this community. Our results were consistent across control and herbivore exclosure treatments, suggesting that herbivores are not driving patterns of negative species co‐occurrence in this community. Any influence of competition or herbivory on co‐occurrence patterns is small enough that it is obscured by other factors such as substrate heterogeneity, dispersal and differential species responses to climatic variation through time. We interpret our results as providing evidence that competition is not responsible for producing negative co‐occurrence patterns in our study community and suggest that this may be the case more broadly.
Genome duplication in plants is thought to be a route to speciation due to cytotype incompatibility. However, to reduce cross-pollination between cytotypes in animal-pollinated species, distinctive floral phenotypes, which would allow pollinator-mediated assortative mating between flowers, are also expected. Chamerion angustifolium is a Holarctic species that forms a hybrid zone between diploid and tetraploid populations in the North American Rocky Mountains. Extensive research has shown that these cytotypes differ in many ways, including some floral traits, and that pollinators can discriminate between cytotypes, leading to assortative mating. However, two signals commonly used by insect pollinators have not been measured for this species, namely petal colour and floral scent. Using greenhouse-grown diploids and tetraploids of C. angustifolium from the ploidy hybrid-zone in the North American Rocky Mountains, we show that both floral scent signals and petal reflectance differ between cytotypes. These differences, along with differences in flower size shown previously, could help explain pollinator-mediated assortative mating observed in previous studies. However, these differences in floral phenotypes may vary in importance to pollinators. While the differences in scent included common floral volatiles readily detected by bumblebees, the differences in petal reflectance may not be perceived by bees based on their visual sensitivity across the spectra. Thus, our results suggest that differences in floral volatile emissions are more likely to contribute to pollinator discrimination between cytotypes and highlight the importance of understanding the sensory systems of pollinators when examining floral signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.