We present a graph-based tool for analysing Java programs operating on dynamic data structures. It involves the generation of an abstract state space employing a user-defined graph grammar. LTL model checking is then applied to this state space, supporting both structural and functional correctness properties. The analysis is fully automated, procedure-modular, and provides informative visual feedback including counterexamples in the case of property violations. H. Arndt and C. Matheja-Supported by Deutsche Forschungsgemeinschaft (DFG) Grant No. 401/2-1.
We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.