Funding information LJMUThe use of cannabis for medicinal/recreational purposes is widespread throughout the world. Smoke inhalation is known to cause airway irritation due to noxious substances (ie, benzene) within the mix. Thus, advanced vaporisation platforms (eg, Davinci IQ) have been developed to circumvent negative health implications. Here, we consider the impact that cannabis smoke and cannabis vapour have on simulated lung surfactant performance within a model pulmonary space (ie, 37°C, elevated humidity and related fluid hydrodynamics). In total, 50 mg of herbal material was ignited or placed within a Davinci IQ vaporiser with subsequent activation. The aliquots were collected and then analysed using gas chromatography-mass spectroscopy for composition and cannabinoid (eg, Δ9-tetrahydrocannabinol [Δ9-THC]) concentration. The average content within cannabis smoke was 2.84% (0.07%, SD) Δ9-THC, with the same for cannabis vapour being 0.88% (0.14%, SD). Aerosolised samples were transferred to the lung biosimulator. When compared with the pristine Curosurf system, challenge with cannabis smoke and cannabis vapour reduced the surface pressure term by 26% and 7% and increased film compressibility by 60% and 15% at 80% trough area, respectively. The net effect would be enhanced film elasticity and an increased work of breathing, being more pronounced on cannabis smoke inhalation. The trends noted were ascribed to two factors operating synergistically, namely the amount of Δ9-THC (plus others) within the aerosolised samples and the associated toxicity profile.Further research is required to establish mass-balance effects (ie, titrated outputs) along with detailed chemical profiling of material generated from the unrelated cannabis activation pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.