According to current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidance documents, physiologically based pharmacokinetic (PBPK) modeling is a powerful tool to explore and quantitatively predict drug‐drug interactions (DDIs) and may offer an alternative to dedicated clinical trials. This study provides whole‐body PBPK models of rifampicin, itraconazole, clarithromycin, midazolam, alfentanil, and digoxin within the Open Systems Pharmacology (OSP) Suite. All models were built independently, coupled using reported interaction parameters, and mutually evaluated to verify their predictive performance by simulating published clinical DDI studies. In total, 112 studies were used for model development and 57 studies for DDI prediction. 93% of the predicted area under the plasma concentration‐time curve (AUC) ratios and 94% of the peak plasma concentration (Cmax) ratios are within twofold of the observed values. This study lays a cornerstone for the qualification of the OSP platform with regard to reliable PBPK predictions of enzyme‐mediated and transporter‐mediated DDIs during model‐informed drug development. All presented models are provided open‐source and transparently documented.
In quantitative systems pharmacology (QSP) and physiologically‐based pharmacokinetic (PBPK) modeling, data digitizing is a valuable tool to extract numerical information from published data presented as graphs. To quantify their relevance, a literature search revealed a remarkable mean increase of 16% per year in publications citing digitizing software together with QSP or PBPK. Accuracy, precision, confounder influence, and variability were investigated using scaled median symmetric accuracy (ζ), thus finding excellent accuracy (mean ζ = 0.99%). Although significant, no relevant confounders were found (mean ζ ± SD circles = 0.69% ± 0.68% vs. triangles = 1.3% ± 0.62%). Analysis of 181 literature peak plasma concentration values revealed a considerable discrepancy between reported and post hoc digitized data with 85% having ζ > 5%. Our findings suggest that data digitizing is precise and important. However, because the greatest pitfall comes from pre‐existing errors, we recommend always making published data available as raw values.
This study provides whole‐body physiologically‐based pharmacokinetic models of the strong index cytochrome P450 (
CYP
)1A2 inhibitor and moderate
CYP
3A4 inhibitor fluvoxamine and of the sensitive
CYP
1A2 substrate theophylline. Both models were built and thoroughly evaluated for their application in drug–drug interaction (
DDI
) prediction in a network of perpetrator and victim drugs, combining them with previously developed models of caffeine (sensitive index
CYP
1A2 substrate), rifampicin (moderate
CYP
1A2 inducer), and midazolam (sensitive index
CYP
3A4 substrate). Simulation of all reported clinical
DDI
studies for combinations of these five drugs shows that the presented models reliably predict the observed drug concentrations, resulting in seven of eight of the predicted
DDI
area under the plasma curve (
AUC
) ratios (
AUC
during
DDI
/
AUC
control) and seven of seven of the predicted
DDI
peak plasma concentration (C
max
) ratios (C
max
during
DDI
/C
max
control) within twofold of the observed values. Therefore, the models are considered qualified for
DDI
prediction. All models are comprehensively documented and publicly available, as tools to support the drug development and clinical research community.
Clarithromycin is a substrate and mechanism-based inhibitor of cytochrome P450 (CYP) 3A4 as well as a substrate and competitive inhibitor of P-glycoprotein (P-gp) and organic anion-transporting polypeptides (OATP) 1B1 and 1B3. Administered concomitantly, clarithromycin causes drug-drug interactions (DDI) with the victim drugs midazolam (CYP3A4 substrate) and digoxin (P-gp substrate). The objective of the presented study was to build a physiologically based pharmacokinetic (PBPK) DDI model for clarithromycin, midazolam, and digoxin and to exemplify dosing adjustments under clarithromycin co-treatment. The PBPK model development included an extensive literature search for representative PK studies and for compound characteristics of clarithromycin, midazolam, and digoxin. Published concentration-time profiles were used for model development (training dataset), and published and unpublished individual profiles were used for model evaluation (evaluation dataset). The developed single-compound PBPK models were linked for DDI predictions. The full clarithromycin DDI model successfully predicted the metabolic (midazolam) and transporter (digoxin) DDI, the acceptance criterion (0.5 ≤ AUC/AUC ≤ 2) was met by all predictions. During co-treatment with 250 or 500 mg clarithromycin (bid), the midazolam and digoxin doses should be reduced by 74 to 88% and by 21 to 22%, respectively, to ensure constant midazolam and digoxin exposures (AUC). With these models, we provide highly mechanistic tools to help researchers understand and characterize the DDI potential of new molecular entities and inform the design of DDI studies with potential CYP3A4 and P-gp substrates.
The first whole-body PBPK model of zoptarelin doxorubicin and its active metabolite doxorubicin has been successfully established. Zoptarelin doxorubicin shows no potential for DDIs via OATP1B3 and OCT2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.