Summary Background Circulating tumour DNA (ctDNA) testing might provide a current assessment of the genomic profile of advanced cancer, without the need to repeat tumour biopsy. We aimed to assess the accuracy of ctDNA testing in advanced breast cancer and the ability of ctDNA testing to select patients for mutation-directed therapy. Methods We did an open-label, multicohort, phase 2a, platform trial of ctDNA testing in 18 UK hospitals. Participants were women (aged ≥18 years) with histologically confirmed advanced breast cancer and an Eastern Cooperative Oncology Group performance status 0–2. Patients had completed at least one previous line of treatment for advanced breast cancer or relapsed within 12 months of neoadjuvant or adjuvant chemotherapy. Patients were recruited into four parallel treatment cohorts matched to mutations identified in ctDNA: cohort A comprised patients with ESR1 mutations (treated with intramuscular extended-dose fulvestrant 500 mg); cohort B comprised patients with HER2 mutations (treated with oral neratinib 240 mg, and if oestrogen receptor-positive with intramuscular standard-dose fulvestrant); cohort C comprised patients with AKT1 mutations and oestrogen receptor-positive cancer (treated with oral capivasertib 400 mg plus intramuscular standard-dose fulvestrant); and cohort D comprised patients with AKT1 mutations and oestrogen receptor-negative cancer or PTEN mutation (treated with oral capivasertib 480 mg). Each cohort had a primary endpoint of confirmed objective response rate. For cohort A, 13 or more responses among 78 evaluable patients were required to infer activity and three or more among 16 were required for cohorts B, C, and D. Recruitment to all cohorts is complete and long-term follow-up is ongoing. This trial is registered with ClinicalTrials.gov , NCT03182634 ; the European Clinical Trials database, EudraCT2015-003735-36; and the ISRCTN registry, ISRCTN16945804. Findings Between Dec 21, 2016, and April 26, 2019, 1051 patients registered for the study, with ctDNA results available for 1034 patients. Agreement between ctDNA digital PCR and targeted sequencing was 96–99% (n=800, kappa 0·89–0·93). Sensitivity of digital PCR ctDNA testing for mutations identified in tissue sequencing was 93% (95% CI 83–98) overall and 98% (87–100) with contemporaneous biopsies. In all cohorts, combined median follow-up was 14·4 months (IQR 7·0–23·7). Cohorts B and C met or exceeded the target number of responses, with five (25% [95% CI 9–49]) of 20 patients in cohort B and four (22% [6–48]) of 18 patients in cohort C having a response. Cohorts A and D did not reach the target number of responses, with six (8% [95% CI 3–17]) of 74 in cohort A and two (11% [1–33]) of 19 patients in cohort D having a response. The most c...
To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.
Purpose: Advanced breast cancer (ABC) has not been subjected to the same degree of molecular scrutiny as early primary cancer. Breast cancer evolves with time and under the selective pressure of treatment, with the potential to acquire mutations with resistance to treatment and disease progression. To identify potentially targetable mutations in advanced breast cancer, we performed prospective molecular characterization of a cohort of patients with ABC. Experimental Design: Biopsies from patients with advanced breast cancer were sequenced with a 41 genes targeted panel in the ABC Biopsy (ABC-Bio) study. Blood samples were collected at disease progression for circulating tumor DNA (ctDNA) analysis, along with matched primary tumor to assess for acquisition in ABC in a subset of patients. Results: We sequenced 210 ABC samples, demonstrating enrichment compared with primary disease for potentially tar-getable mutations in HER2 (in 6.19% of samples), AKT1 (7.14%), and NF1 (8.10%). Of these enriched mutations, we show that NF1 mutations were frequently acquired in ABC, not present in the original primary disease. In ER-positive cancer cell line models, loss of NF1 resulted in endocrine therapy resistance, through both ER-dependent and-independent mechanisms. NF1 loss promoted ER-independent cyclin D1 expression, which could be therapeutically targeted with CDK4/6 inhibitors in vitro. Patients with NF1 mutations detected in baseline circulating tumor DNA had a good outcome on the CDK4/6 inhibitor palbociclib and fulvestrant. Conclusions: Our research identifies multiple therapeutic opportunities for advanced breast cancer and identifies the previously underappreciated acquisition of NF1 mutations.
The genomics of advanced breast cancer (ABC) has been described through tumour tissue biopsy sequencing, although these approaches are limited by geographical and temporal heterogeneity. Here we use plasma circulating tumour DNA sequencing to interrogate the genomic profile of ABC in 800 patients in the plasmaMATCH trial. We demonstrate diverse subclonal resistance mutations, including enrichment of HER2 mutations in HER2 positive disease, co-occurring ESR1 and MAP kinase pathway mutations in HR + HER2− disease that associate with poor overall survival (p = 0.0092), and multiple PIK3CA mutations in HR + disease that associate with short progression free survival on fulvestrant (p = 0.0036). The fraction of cancer with a mutation, the clonal dominance of a mutation, varied between genes, and within hotspot mutations of ESR1 and PIK3CA. In ER-positive breast cancer subclonal mutations were enriched in an APOBEC mutational signature, with second hit PIK3CA mutations acquired subclonally and at sites characteristic of APOBEC mutagenesis. This study utilises circulating tumour DNA analysis in a large clinical trial to demonstrate the subclonal diversification of pre-treated advanced breast cancer, identifying distinct mutational processes in advanced ER-positive breast cancer, and novel therapeutic opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.