Gram-negative bacteria have an outer membrane, which acts as a protective barrier and excludes many antibiotics. The limited number of antibiotics active against Gram-negative bacteria, along with rising rates of antibiotic resistance, highlights the need for efficient antibiotic discovery efforts.
The outer membrane (OM) is the defining feature of gram-negative bacteria and is an essential organelle. Accordingly, OM assembly pathways and their essential protein components are conserved throughout all gram-negative species. Lipoprotein trafficking lies at the heart of OM assembly since it supplies several different biogenesis machines with essential lipoproteins. The
Escherichia coli
Lol trafficking pathway relies on an inner membrane LolCDE transporter that transfers newly made lipoproteins to the chaperone LolA, which rapidly traffics lipoproteins across the periplasm to LolB for insertion into the OM. Strikingly, many gram-negative species (like
Caulobacter vibrioides
) do not produce LolB, yet essential lipoproteins are still trafficked to the OM. How the final step of trafficking occurs in these organisms has remained a long-standing mystery. We demonstrate that LolA from
C. vibrioides
can complement the deletion of both LolA and LolB in
E. coli
, revealing that this protein possesses both chaperone and insertion activities. Moreover, we define the region of
C. vibrioides
LolA that is responsible for its bifunctionality. This knowledge enabled us to convert
E. coli
LolA into a similarly bifunctional protein, capable of chaperone and insertion activities. We propose that a bifunctional LolA eliminates the need for LolB. Our findings provide an explanation for why some gram-negative species have retained an essential LolA yet completely lack a dedicated LolB protein.
Hypoxia and acidosis are recognized features of inflammatory arthroses. This study describes the effects of IGF-1 and TGF-b 1 on pH regulatory mechanisms in articular cartilage under hypoxic conditions. Acid efflux, reactive oxygen species (ROS), and mitochondrial membrane potential were measured in equine articular chondrocytes isolated in the presence of serum (10% fetal calf serum), IGF-1 (1, 10, 50, 100 ng/ml) or TGF-b 1 (0.1, 1, 10 ng/ml) and then exposed to a short-term (3 h) hypoxic insult (1% O 2 ). Serum and 100 ng/ml IGF-1 but not TGF-b 1 attenuated hypoxic regulation of pH homeostasis. IGF-1 appeared to act through mitochondrial membrane potential stabilization and maintenance of intracellular ROS levels in very low levels of oxygen. Using protein phosphorylation inhibitors PD98059 (25 mM) and wortmannin (200 nM) and Western blotting, ERK1/2 and PI-3 kinase pathways are important for the effect of IGF-1 downstream to ROS generation in normoxia but only PI-3 kinase is implicated in hypoxia. These results show that oxygen and growth factors interact to regulate pH recovery in articular chondrocytes by modulating intracellular oxygen metabolites.
Despite being fully differentiated, DNA methylation is dynamically regulated in post-mitotic glutamatergic neurons in the CA1 of the hippocampus through competing active DNA methylation and de-methylation, a process that regulates neuronal plasticity. Active DNA methylation after learning is necessary for long-term memory formation, and active DNA de-methylation by the TET enzymes has been implicated as a counter-regulator of that biochemical process. We demonstrate that Tet2 functions in the CA1 as a negative regulator of long-term memory, whereby its knockdown across the CA1 or haploinsufficiency in glutamatergic neurons enhances the fidelity of hippocampal-dependent spatial and associative memory. Loci of altered DNA methylation were then determined using whole genome bisulfite sequencing from glutamatergic Tet2 haploinsufficient CA1 tissue, which revealed hypermethylation in the promoters of genes known to be transcriptionally regulated after experiential learning. This study demonstrates a link between Tet2 activity at genes important for memory formation in CA1 glutamatergic neurons and memory fidelity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.