Articular cartilage is a specialized connective tissue, predominately composed of water, collagen, and proteoglycans, that provides a smooth, lubricated surface for articulation in joints. It has long been considered radioinsensitive and therefore unaffected by exposure to radiation in medical settings. Due to the increased amount of yearly radiation exposure through radiotherapy and ionizing radiation diagnostic procedures, there has been a renewed interest in how radioinsensitive articular cartilage actually is. Despite this renewed interest, the majority of these studies do not focus on articular cartilage as their primary goal, but rather, have observed the effects of total body irradiation. Since many of these studies do not report the type of irradiation used, the rate of exposure, or use consistent models, there are inconsistencies in these studies, which make comparing and translating the results difficult. Previous literature reviews have found less than 60 studies discussing the effects of radiation on articular cartilage and its components both in vitro and in vivo. However, despite the inconsistencies, these reviews and studies have drawn the same overall conclusion that this research needs to be continued and broadened in order to make a consistent conclusion on the radioinsensitivity of articular cartilage. Therefore, the goal of this review is to categorize and summarize current findings in literature discussing the effects of radiation on articular cartilage.
Hannah Cash is pursuing her PhD in Bioengineering with a focus on Engineering and Science Education. Working with students through the engineering design process, Hannah has been encouraged to aid in outreach opportunities to bring Bioengineering and Design to younger students and teachers throughout the Upstate of South Carolina through work with the Perry Initiative and Project Lead the Way. The Perry Initiative works to inspire young women to be leaders in engineering and medicine, while Project Lead the Way works to bring engineering and medicine to teachers and students in K through 12 programs.Hannah was a four year club sports athlete for the Clemson University Women's Ultimate team. She was captain for two years, which taught her team-centered leadership. Hannah used these skills to lead her senior design capstone team to develop and create a functional sports rehabilitation device. Hannah found her drive for design and engineering education during the development of this device and is working to instill students with the same drive and initiative through experimental learning.
ConclusionTo conclude, there is more research to be done in this field. This study may serve as a prompt to clinicians, including paediatricians, to ask about eating issues/disorders when prescribing contraception. The study assisted with the production of a proforma for clinicians to use when an eating disorder history is elicited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.