We developed a hybrid analog/digital lightwave neuromorphic processing device that effectively performs signal feature recognition. The approach, which mimics the neurons in a crayfish responsible for the escape response mechanism, provides a fast and accurate reaction to its inputs. The analog processing portion of the device uses the integration characteristic of an electro-absorption modulator, while the digital processing portion employ optical thresholding in a highly Ge-doped nonlinear loop mirror. The device can be configured to respond to different sets of input patterns by simply varying the weights and delays of the inputs. We experimentally demonstrated the use of the proposed lightwave neuromorphic signal processing device for recognizing specific input patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.