The combination of linear polymers with dendritic chain-ends has led to numerous studies of linear-dendritic polymer hybrid materials. Interchain branching within the linear segment of these materials has recently extended this concept to the formation of soluble hyperbranched-polydendrons. Here, the introduction of amphiphilicity into hyperbranched-polydendrons has been achieved for the first time through the use of tertiary amine functional dendritic chain-ends and branched hydrophobic polymer segments. The synthesis and aqueous nanoprecipitation of these branched materials is compared with their linear-dendritic polymer analogues, showing that chain-end chemistry/generation, precipitation medium pH and polymer architecture are all capable of influencing the ability to generate nanoparticles, the resulting nanoparticle diameter and dispersity, and subsequent response to changes in pH.
The synthesis of complex polymer architectures using relatively facile experimental protocols provides access to materials with the opportunity to control functionality and physical behaviour. The scope of hyperbranched-polydendron chemistries has...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.