Biological conservation often requires an understanding of how environmental conditions affect species occurrence and detection probabilities. We used a hierarchical framework to evaluate these effects for several Appalachian stream fish species of conservation concern: Chrosomus cumberlandensis (BSD; blackside dace), Etheostoma sagitta (CAD; Cumberland arrow darter), and Etheostoma spilotum (KAD; Kentucky arrow darter). Etheostoma susanae (Cumberland darter) also is present in the study area but was too rare to model in this analysis. In this study, conducted by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service, fish and habitat data were collected from 205 randomly selected stream sites in the upper Cumberland and Kentucky River Basins (120 and 85 sites, respectively) of Kentucky and Tennessee. Sites were sampled with 10 spatial replicates (2 meter x 5 meter electrofishing zones) to enable estimation of detection probabilities and environmental effects. The best models (that is, lowest Akaike information criterion scores) showed the effects of agriculture (negative) on occurrence of BSD and stream conductivity (negative) on occurrence of CAD and KAD. These effects were statistically more important than measures of basin area, elevation, and substrate size. Conductivity and agriculture showed nonlinear effects on species occurrence, and effects of conductivity were more precise above 400 microsiemens per centimeter than below this threshold. Models incorporated detection-level effects of electrofishing time (positive), flow velocity (negative), sand substrate (positive), and gravel/cobble substrate (negative). Models accounting for detection of BSD estimated occupancy rates similar to the observed proportion of occupied sites (0.10), but the best-supported models for CAD and KAD increased expected occupancy by about 4 percent for each species (from 0.17 to 0.21 for CAD and from 0.07 to 0.11 for KAD). Results of this study provide new inferences for modeling stream fish occurrence and detection processes and highlight the importance of continued monitoring and assessment of rare fish species in Appalachian headwater streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.