The selective autophagy of mitochondria is linked to mitochondrial quality control and is critical to a healthy organism. Ubiquitylation is sometimes needed for marking damaged mitochondria for disposal but also for governing the expression and turnover of critical regulatory proteins. We have conducted a CRISPR/Cas9 screen of human E3 ubiquitin ligases for influence on mitophagy under both basal cell culture conditions and following acute mitochondrial depolarisation. We identify two Cullin RING ligases, VHL and FBXL4 as the most profound negative regulators of basal mitophagy. Here we show that these converge through control of the mitophagy adaptors BNIP3 and BNIP3L/NIX, but that this is achieved through different mechanisms. FBXL4 suppression of BNIP3 and NIX levels is mediated via direct interaction and protein destabilisation rather than suppression of HIF1α-mediated transcription. Depletion of NIX but not BNIP3 is sufficient to restore mitophagy levels. Our study enables a full understanding of the aetiology of early onset mitochondrial encephalomyopathy that is supported by analysis of a disease associated mutation. We further show that the compound MLN4924, which globally interferes with Cullin RING ligase activity, is a strong inducer of mitophagy which can provide a research tool in this context as well as a candidate therapeutic agent for conditions linked to mitochondrial quality control.
When a ribosome stalls during translation, it runs the risk of collision with a trailing ribosome. Such an encounter leads to the formation of a stable di-ribosome complex, which needs to be resolved by a dedicated machinery. The initial stalling and the subsequent resolution of di-ribosomal complexes requires activity of Makorin and ZNF598 ubiquitin E3 ligases, respectively, through ubiquitylation of the eS10 and uS10 subunits of the ribosome. We have developed a specific small-molecule inhibitor of the deubiquitylase USP9X. Proteomics analysis, following inhibitor treatment of HCT116 cells, confirms previous reports linking USP9X with centrosome-associated protein stability but also reveals a loss of Makorin 2 and ZNF598. We show that USP9X interacts with both these ubiquitin E3 ligases, regulating their abundance through the control of protein stability. In the absence of USP9X or following chemical inhibition of its catalytic activity, levels of Makorins and ZNF598 are diminished, and the ribosomal quality control pathway is impaired.
Selective autophagy of mitochondria, mitophagy, is linked to mitochondrial quality control and as such is critical to a healthy organism. We have used a CRISPR/Cas9 approach to screen human E3 ubiquitin ligases for influence on mitophagy under both basal cell culture conditions and upon acute mitochondrial depolarization. We identify two cullin-RING ligase substrate receptors, VHL and FBXL4, as the most profound negative regulators of basal mitophagy. We show that these converge, albeit via different mechanisms, on control of the mitophagy adaptors BNIP3 and BNIP3L/ NIX. FBXL4 restricts NIX and BNIP3 levels via direct interaction and protein destabilization, while VHL acts through suppression of HIF1a-mediated transcription of BNIP3 and NIX. Depletion of NIX but not BNIP3 is sufficient to restore mitophagy levels. Our study contributes to an understanding of the aetiology of early-onset mitochondrial encephalomyopathy that is supported by analysis of a disease-associated mutation. We further show that the compound MLN4924, which globally interferes with cullin-RING ligase activity, is a strong inducer of mitophagy, thus providing a research tool in this context and a candidate therapeutic agent for conditions linked to mitochondrial dysfunction.
When a ribosome stalls during translation, it runs the risk of collision with a trailing ribosome. Such an encounter leads to the formation of a stable di-ribosome complex, which needs to be resolved by a dedicated machinery. The initial stalling and the subsequent resolution of di-ribosomal complexes requires activity of Makorin and ZNF598 ubiquitin E3 ligases respectively, through ubiquitylation of the eS10 and uS10 sub-units of the ribosome.It is common for the stability of RING E3 ligases to be regulated by an interacting deubiquitylase (DUB), which often opposes auto-ubiquitylation of the E3. Here, we show that the DUB USP9X directly interacts with ZNF598 and regulates its abundance through the control of protein stability in human cells. We have developed a highly specific small molecule inhibitor of USP9X. Proteomics analysis, following inhibitor treatment of HCT116 cells, confirms previous reports linking USP9X with centrosome associated protein stability and reveals loss of ZNF598 and Makorin 2. In the absence of USP9X or following chemical inhibition of its catalytic activity, steady state levels of Makorins and ZNF598 are diminished and the ribosomal quality control pathway is impaired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.