Highly rigid membrane materials with tailored structures have exhibited permeabilities and selectivities that exceed the polymer upper bound in gaseous and organic solvent separations for challenging mixtures containing species that are similar in size and shape. One potential question is whether such membrane materials can maintain meaningful guest diffusivities in situations where the microporous spaces are essentially full of guest molecules. Here, we use a simplified transition state theory approach to estimate the diffusivity of water and small organics within a microporous membrane. The transition state theory model is parameterized using experimental values from zeolites and carbon molecular sieve materials found in the literature. We demonstrate the differences in transport and Maxwell−Stefan diffusivities based on guest species loading with different isotherm behaviors. These calculations theorize a path forward for highly selective reverse osmosis membranes for aqueous phase separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.