The hypothesis was that probiotic Lactobacillus species (spp.) or their cell‐free supernatant (CFS) are effective in inhibiting (a) planktonic growth of Pseudomonas aeruginosa (PA), (b) its adhesion to a Ti6Al4V‐alloy surface, and (c) in dispersing biofilm once formed. (a) A planktonic co‐culture containing PA(104 colony‐forming unit [CFU]/ml) was combined with either Lactobacillus acidophilus, Lactobacillus plantarum (LP), or Lactobacillus fermentum (LF) at a suspension of 104 (1:1) or 108 CFU/ml (1:2). Lactobacillus and PA CFUs were then quantified. (b) Ti‐6Al‐4V discs were inoculated with PA followed by supplementation with CFS and adherent PA quantified. (c) Biofilm covered discs were supplemented with Lactobacillus CFS and remaining PA activity quantified. Results showed that whole‐cell cultures were ineffective in preventing PA growth; however, the addition of CFS resulted in a 99.99 ± 0.003% reduction in adherent PA in all Lactobacillus groups (p < .05 in all groups) with no viable PA growth measured in the LF and LP groups. Following PA biofilm formation, CFS resulted in a significant reduction in PA activity in all Lactobacillus groups (p ≤ .05 in all groups) with a 29.75 ± 15.98% increase measured in control samples. Supplementation with CFS demonstrated antiadhesive, antibiofilm, and toxic properties to PA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.