A QuantCrit investigation of society's educational debts due to racism and sexism in chemistry student learning. ChemRxiv. Preprint.
Background: A growing part of the efforts to promote student engagement and success in undergraduate STEM are the family of Student Support and Outreach Programs (SSOPs), which task undergraduate students with providing support and mentoring to their peers and near-peers. Research has shown that these programs can provide a variety of benefits for the programs' recipients, including increased academic achievement, satisfaction, retention, and entry into STEM careers. This paper extends this line of inquiry to investigate how participation in these programs impacts the undergraduate STEM students that provide the mentoring (defined here as undergraduate mentor-teachers or UMTs). We use activity theory to explore the nature of metacognition and identity development in UMTs engaged in two programs at a public urban-serving university in the western USA: a STEM Learning Assistant program and a program to organize middle and high school STEM clubs. Constructs of metacognition and identity development are seen as critical outcomes of experiential STEM inreach and outreach programs. Results: Written reflections were collected throughout implementation of two experiential STEM inreach and outreach programs. A thematic analysis of the reflections revealed UMTs using metacognitive strategies including content reflection and reinforcement and goal setting for themselves and the students they were supporting. Participants also showed metacognitive awareness of the barriers and challenges related to their role in the program. In addition to these metacognitive processes, the UMTs developed their science identities by attaching different meanings to their role as a mentor in their respective programs and setting performance expectations for their roles. Performance expectations were contingent on pedagogical skills and the amount and type of content knowledge needed to effectively address student needs. The ability to meet students' needs served to validate and verify UMTs' role in the program, and ultimately their own science identities. Conclusion: Findings from this study suggest that metacognitive and identity developments are outcomes shaped not only by undergraduate students' experiences, but also by their perceptions of what it means to learn and teach STEM. Experiential STEM inreach and outreach programs with structured opportunities for guided and open reflections can contribute to building participants' metacognition and enhancing their science identities.
Background The success of the learning assistant (LA) model has largely been attributed to LA facilitation of active learning tasks. A deeper understanding of how LAs facilitate these tasks would inform LA training and support successful adoption of the LA model. Our investigation of LA actions during their interaction with students in the classroom contributes to that understanding. We present and discuss the development of the action taxonomy for learning assistants (ATLAs), as well as illustrate its applicability by presenting some analyses that were conducted on sample data. Results The LAs carried out several different actions that we categorized broadly as LA-Directed Facilitation, LA-Guided Facilitation, Advice, Feedback, Course-Related Talk, and Non-Course-Related Talk. LA-Directed Facilitation and LA-Guided Facilitation were the most common types of actions observed. We found that LA actions varied by course. Conclusions ATLAs is a tool that can be used to examine LA actions. In our sample data set, LAs undertook many different actions during interactions with students which indicates that LAs play several different roles in the classroom. These findings have practical implications not only for faculty seeking to implement a peer instruction model such as the LA model, but also for instructors wanting to utilize LAs in their courses more effectively. Understanding what the LAs are doing during interactions with students can provide us insight into the different roles that LAs undertake. Knowledge of these roles will guide effective training, feedback, and direction of LAs, particularly during the pedagogy course.
Education researchers often compare performance across race and gender on research-based assessments of physics knowledge to investigate the impacts of racism and sexism on physics student learning. These investigations' claims rely on research-based assessments providing reliable, unbiased measures of student knowledge across social identity groups. We used classical test theory and differential item functioning (DIF) analysis to examine whether the items on the Force Concept Inventory (FCI) provided unbiased data across social identifiers for race, gender, and their intersections. The data was accessed through the Learning About STEM Student Outcomes platform and included responses from 4,848 students posttests in 152 calculus-based introductory physics courses from 16 institutions. The results indicated that the majority of items ( 22) on the FCI were biased towards a group. These results point to the need for instrument validation to account for item bias and the identification or development of fair research-based assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.