Background: IAPP 1-37 and ProIAPP 1-48 are amyloidogenic peptides implicated in β-cell death in diabetes. Interactions with metals may be involved in both the cytotoxicity of these peptides and their deposition as amyloids associated with diabetes-related pathologies. Methods: We have used the complementary methods of thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) to investigate the role of seeds and specifically metal-peptide seeds in accelerating amyloid formation by ProIAPP. In addition we have used these complementary methods alongside dynamic light scattering (DLS) to observe the dynamics of IAPP amyloid formation during the earliest phase of peptide aggregation. Results: Seeding universally resulted in an acceleration of amyloid formation, as indicated by increased ThT fluorescence, over the shorter term (minutes) while having no influence upon total amyloid deposits (no differences in ThT fluorescence) over many days. Only copper-peptide seeds were ineffective in accelerating amyloid formation above that observed for sham seeds (no peptide). Different seeding environments resulted in amyloid deposits of different fibrillar and non-fibrillar morphologies following longer term incubations regardless of the uniform nature of the respective measurements of ThT fluorescence. The aggregation dynamics of IAPP, mimicking its secretion into extracellular milieus, were complex and suggested that while metals at equimolar, generally increased rates of aggregation, with the possible exception of Cu(II), the range of sub-micron and micron-sized particles observed were not easily explained by either measurement of ThT fluorescence or imaging by TEM. Conclusions: Seeding may be significant in accelerating the formation of amyloid and in influencing the final morphologies of deposited amyloids but not in determining the total deposits of amyloid. It was of interest that copper-peptide seeds did not accelerate amyloid formation in the shorter term and this could indicate an incompatible seeding morphology due to copper? This first attempt to monitor aggregation dynamics of IAPP over only minutes has shown direct impact of metals on peptide particle size which could have implications for the cytotoxicity of IAPP in diabetes.
Increasing use of single-walled carbon nanotubes (SWCNTs) will lead to their increased release into the environment. Previous work has shown negative effects of SWCNT on growth and survival of model organisms. The aim of the current study was to determine the effect of SWCNT well-dispersed by either DNA or sodium cholate (SC) on the unicellular green algae Chlamydomonas reinhardtii in stagnant water conditions. Growth measurements were taken up to ten days for algae treated with varied levels of DNA:SWCNT or SC:SWCNT or controls, and chlorophyll content after 10 days was determined. Results show no effect on either growth or chlorophyll content of algae at any concentration or duration. This is in contradiction to prior work showing toxicity of SWCNT to environmental model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.