Background: Radiological high-resolution computed tomography-based evaluation of cochlear implant candidates’ cochlear duct length (CDL) has become the method of choice for electrode array selection. The aim of the present study was to evaluate if MRI-based data match CT-based data and if this impacts on electrode array choice. Methods: Participants were 39 children. CDL, length at two turns, diameters, and height of the cochlea were determined via CT and MRI by three raters using tablet-based otosurgical planning software. Personalized electrode array length, angular insertion depth (AID), intra- and interrater differences, and reliability were calculated. Results: Mean intrarater difference of CT- versus MRI-based CDL was 0.528 ± 0.483 mm without significant differences. Individual length at two turns differed between 28.0 mm and 36.6 mm. Intrarater reliability between CT versus MRI measurements was high (intra-class correlation coefficient (ICC): 0.929–0.938). Selection of the optimal electrode array based on CT and MRI matched in 90.1% of cases. Mean AID was 629.5° based on the CT and 634.6° based on the MRI; this is not a significant difference. ICC of the mean interrater reliability was 0.887 for the CT-based evaluation and 0.82 for the MRI-based evaluation. Conclusion: MRI-based CDL measurement shows a low intrarater difference and a high interrater reliability and is therefore suitable for personalized electrode array selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.