Effect size measures and visualization techniques aimed at maximizing the interpretability and comparability of results from statistical models have long been of great importance and are recently again receiving increased attention in the literature. However, since the methods proposed in this context originate from a wide variety of disciplines and are more often than not practically motivated, they lack a common theoretical framework and many quantities are narrowly or heuristically defined. In this work, we put forward a common mathematical setting for effect size measures and visualization techniques aimed at the results of parametric regression and define a formal framework for the consistent derivation of both existing and new variants of such quantities. Throughout the presented theory, we utilize probability measures to derive weighted means over areas of interest. While we take a Bayesian approach to quantifying uncertainty in order to derive consistent results for every defined quantity, all proposed methods apply to the results of both frequentist and Bayesian inference. We apply selected specifications derived from the proposed framework to data from a clinical trial and a multi-analyst study to illustrate its versatility and relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.