Although mechanisms of acquired resistance of EGFR mutant non-small cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here, we observe that acquired resistance caused by the T790M gatekeeper mutation can occur either by selection of pre-existing T790M clones or via genetic evolution of initially T790M-negative drug tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug tolerant cells had a diminished apoptotic response to third generation EGFR inhibitors that target T790M EGFR; treatment with navitoclax, an inhibitor of BCL-XL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug resistant cancer cells can both pre-exist and evolve from drug tolerant cells, and point to therapeutic opportunities to prevent or overcome resistance in the clinic.
BH3 mimetic drugs, which inhibit pro-survival BCL-2 family proteins, have limited single-agent activity in solid tumor models. The potential of BH3 mimetics for these cancers may depend on their ability to potentiate the apoptotic response to chemotherapy and targeted therapies. Using a novel class of potent and selective MCL-1 inhibitors, we demonstrate that concurrent MEK + MCL-1 inhibition induces apoptosis and tumor regression in KRAS mutant non-small cell lung cancer (NSCLC) models, which respond poorly to MEK inhibition alone. Susceptibility to BH3 mimetics that target either MCL-1 or BCL-XL was determined by the differential binding of pro-apoptotic BCL-2 proteins to MCL-1 or BCL-XL, respectively. The efficacy of dual MEK + MCL-1 blockade was augmented by prior transient exposure to BCL-XL inhibitors, which promotes the binding of pro-apoptotic BCL-2 proteins to MCL-1. This suggests a novel strategy for integrating BH3 mimetics that target different BCL-2 family proteins for KRAS mutant NSCLC.
Purpose: Epithelial-to-mesenchymal transition (EMT) confers resistance to a number of targeted therapies and chemotherapies. However, it has been unclear why EMT promotes resistance, thereby impairing progress to overcome it.Experimental Design: We have developed several models of EMT-mediated resistance to EGFR inhibitors (EGFRi) in EGFR-mutant lung cancers to evaluate a novel mechanism of EMT-mediated resistance.Results: We observed that mesenchymal EGFR-mutant lung cancers are resistant to EGFRi-induced apoptosis via insufficient expression of BIM, preventing cell death despite potent suppression of oncogenic signaling following EGFRi treatment. Mechanistically, we observed that the EMT transcription factor ZEB1 inhibits BIM expression by binding directly to the BIM promoter and repressing transcription. Derepression of BIM expression by depletion of ZEB1 or treatment with the BH3 mimetic ABT-263 to enhance "free" cellular BIM levels both led to resensitization of mesenchymal EGFR-mutant cancers to EGFRi. This relationship between EMT and loss of BIM is not restricted to EGFR-mutant lung cancers, as it was also observed in KRAS-mutant lung cancers and large datasets, including different cancer subtypes.Conclusions: Altogether, these data reveal a novel mechanistic link between EMT and resistance to lung cancer targeted therapies.
There are currently no effective targeted therapies for KRAS mutant cancers. Therapeutic strategies that combine MEK inhibitors with agents that target apoptotic pathways may be a promising therapeutic approach. We investigated combining MEK and MDM2 inhibitors as a potential treatment strategy for KRAS mutant non-small cell lung cancers and colorectal carcinomas that harbor wild-type TP53. The combination of pimasertib (MEK inhibitor) + SAR405838 (MDM2 inhibitor) was synergistic and induced the expression of PUMA and BIM, led to apoptosis and growth inhibition in vitro, and tumor regression in vivo. Acquired resistance to the combination commonly resulted from the acquisition of TP53 mutations, conferring complete resistance to MDM2 inhibition. In contrast, resistant clones exhibited marked variability in sensitivity to MEK inhibition, which significantly impacted sensitivity to subsequent treatment with alternative MEK inhibitor-based combination therapies. These results highlight both the potential promise and limitations of combining MEK and MDM2 inhibitors for treatment of KRAS mutant NSCLC and CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.