Transporter-dependent steroid hormone uptake into target cells was demonstrated in genetically engineered mice and fruit flies. We hypothesized that mutations in such transporters may cause differences in sex development (DSD) in humans.Exome sequencing was performed in 16 genetically unsolved cases of 46,XY DSD selected from an anonymized collection of 708 lines of genital fibroblasts (GF) that were taken from individuals with incomplete virilization. Selection criteria were based on available biochemical characterization of GF compatible with reduced androgen uptake. Two unrelated individuals were identified with mutations in LDL receptor-related protein 2 (LRP2), a gene previously associated with partial sex steroid insensitivity in mice. Like Lrp2 −/− mice, affected individuals had nondescended testes. Western blots on GF confirmed reduced LRP2 expression, and endocytosis of sex hormone-binding globulin was reduced. In three unrelated individuals, two with undescended testes, mutations in another endocytic receptor gene, limb development membrane protein 1 like (LMBR1L), were detected. Two of these individuals had mutations affecting the same codon. In a transfected cell model, mutated LMBR1L showed reduced cell surface expression. Our findings suggest that endocytic androgen uptake in complex with sex hormone-binding globulin is relevant in human. LMBR1L may play a similar role in androgen uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.