The Asuka (A)-12236 meteorite has recently been classified as a CM carbonaceous chondrite of petrologic type 3.0/2.9 and is among the most primitive CM meteorites studied to date. Here, we report the concentrations, relative distributions, and enantiomeric ratios of amino acids in water extracts of the A-12236 meteorite and another primitive CM chondrite Elephant Moraine (EET) 96029 (CM2.7) determined by ultra-high-performance liquid chromatography time-of-flight mass spectrometry. EET 96029 was highly depleted in amino acids and dominated by glycine, while a wide diversity of two-to six-carbon aliphatic primary amino acids were identified in A-12236, which had a total amino acid abundance of 360 AE 18 nmol g À1 , with most amino acids present without hydrolysis (free). The amino acid concentrations of A-12236 were double those previously measured in the CM2.7 Paris meteorite, consistent with A-12236 being a highly primitive and unheated CM chondrite. The high relative abundance of a-amino acids in A-12236 is consistent with formation by a Strecker-cyanohydrin dominated synthesis during a limited early aqueous alteration phase on the CM meteorite parent body. The presence of predominantly free glycine, a near racemic mixture of alanine (D/L~0.93-0.96), and elevated abundances of several terrestrially rare nonprotein amino acids including a-aminoisobutyric acid (a-AIB) and racemic isovaline indicate that these amino acids in A-12236 are extraterrestrial in origin. Given a lack of evidence for biological amino acid contamination in A-12236, it is possible that some of the Lenantiomeric excesses (L ee~3 4-64%) of the protein amino acids, aspartic and glutamic acids and serine, are indigenous to the meteorite; however, isotopic measurements are needed for confirmation. In contrast to more aqueously altered CMs of petrologic types ≤2.5, no Lisovaline excesses were detected in A-12236. This observation strengthens the hypothesis that extensive parent body aqueous activity is required to produce or amplify the large L-isovaline excesses that cannot be explained solely by exposure to circularly polarized radiation or other chiral symmetry breaking mechanisms prior to incorporation into the asteroid parent body.
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS- REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.Comment: 75 pages, 28 figures, 2 supplements, accepted for publication in Space Science Review
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.