The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.
Summary1. Coastal saltmarshes provide distinctive biodiversity and important ecosystem services, including coastal defence, supporting fisheries and nutrient cycling. However, c. 50% of the world's coastal marshes are degraded or have been lost, with losses continuing. In both Europe and North America, there is a legal requirement to create habitats to substitute for losses. How well do created habitats replicate natural salt marshes? 2. We compared plant communities and environmental characteristics of 18 deliberately realigned (managed realignment, MR -between 1 and 14 years old), 17 accidentally realigned (AR, 25-131 years old) sites with those on 34 natural reference saltmarshes in the UK. 3. Halophytic species colonized individual realignment sites rapidly, attaining species richness similar to nearby reference marshes after 1 year. Nevertheless, the community composition of MR sites was significantly different from reference sites, with early-successional species remaining dominant, even on the high marsh. 4. The dominance of pioneer species on the low and mid-marsh may be because, at the same elevation, sediments were less oxygenated than on reference sites. Sediments were well oxygenated on the high marsh, but were often drier than on natural marshes. 5. Overall community composition of AR marshes was not significantly different to reference marshes, but the characteristic perennials Limonium vulgare, Triglochin maritima, Plantago maritima and Armeria maritima remained relatively rare. In contrast, the shrub Atriplex portulacoides was more abundant, and its growth form may inhibit or delay colonization by other species. 6. Synthesis and applications. Marshes created by managed realignment do not satisfy the requirements of the EU Habitats Directive. Adherence to the Directive might be improved by additional management interventions, such as manipulation of topographic heterogeneity or planting of mid-and upper-marsh species. However, given the inherent variation in natural saltmarshes and projected environmental change, policies that require exact equivalence at individual sites may be unachievable. More realistic goals might require minimum levels of a range of ecosystem functions on a broader scale, across catchments or regions.
Summary1. Many characteristics of the salt marsh environment covary with elevation. It has therefore proved difficult to determine which environmental characteristics limit the distributions of particular species in the field. Oxygen supply to the rhizosphere may be particularly important, as it is determined by the duration and frequency of flooding. 2. The re-activation of a salt marsh by managed coastal realignment provided an opportunity to investigate the large-scale manipulation of environmental effects on halophyte distribution in a situation where the usual relationships between environmental characteristics, elevation and succession had been partially uncoupled. 3. Most locations sampled lay between mean neap and mean spring tidal levels. As expected, anoxic conditions occurred at lower elevation, redox potential increased generally with elevation and sediments were oxic on the upper parts. However, sediment oxygenation at any given elevation was variable, particularly at intermediate levels in the tidal range. This imperfect correlation between elevation and sediment redox allowed quantification of their independent effects on species distributions using the statistical technique of Hierarchical Partitioning. 4. Effects of elevation and sediment redox potential were distinguishable from each other. Salicornia europaea occurred predominantly at lower elevation but was not influenced by redox potential. Puccinellia maritima favoured low redox potentials independently of elevation. In contrast, Suaeda maritima tolerated a wide range of elevations but was absent from areas with low redox potential. Atriplex portulacoides was apparently more averse to low redox potential than to low elevation. Elytrigia atherica was restricted to both high redox potential and high elevation. Smaller independent effects of sediment depth, salinity, water content, nitrate concentration, shear strength and loss on ignition were apparent for some species. 5. Synthesis. Although much of the elevational zonation of species on salt marshes is mediated by differential tolerance of the consequences of co-linearly varying variables, particularly sediment anoxia and elevation, these variables have independent effects that are quantifiable in the field. Hierarchical Partitioning provides a valuable tool for distinguishing the mechanisms underlying species zonations on environmental gradients, especially where large-scale environmental manipulations have partially decoupled the usual co-linear variation.
Summary Successful conservation will increasingly depend on our ability to help species cope with climate change. While there has been much attention on accommodating or assisting range shifts, less has been given to the alternative strategy of helping species survive climate change through in situ management.Here we provide a synthesis of published evidence examining whether habitat management can be used to offset the adverse impacts on biodiversity of changes in temperature, water availability and sea‐level rise. Our focus is on practical methods whereby the local environmental conditions experienced by organisms can be made more suitable.Many studies suggest that manipulating vegetation structure can alter the temperature and moisture conditions experienced by organisms, and several demonstrate that these altered conditions benefit species as regional climatic conditions become unsuitable. The effects of topography on local climatic conditions are even better understood, but the alteration of topography as a climate adaptation tool is not ingrained in conservation practice. Trials of topographic alteration in the field should therefore be a priority for future research.Coastal systems have the natural capacity to keep pace with climate change, but require sufficient sediment supplies and space for landward migration to do so. There is an extensive literature on managed realignment. While the underlying rationale is simple, successful implementation requires careful consideration of elevation and past land use. Even with careful management, restored habitats may not attain the physical and biological attributes of natural habitats. Synthesis and applications. The recent literature provides a compelling case that some of the adverse effects of climate change can be offset by appropriate management. However, much of the evidence for this is indirect and too few studies provide empirical tests of the long‐term effectiveness of these management interventions. It is clear from the existing evidence that some techniques have a higher risk of failure or unexpected outcomes than others and managers will need to make careful choices about which to implement. We have assessed the strength of evidence of these approaches in order to demonstrate to conservation professionals the risks involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.