We report the through-plane thermal conductivities of the several widely used carbon porous transport layers (PTLs) and their thermal contact resistance to an aluminum polarization plate. We report these values both for wet and dry samples and at different compaction pressures. We show that depending on the type of PTL and the existence of residual water, the thermal conductivity of the materials varies from 0.15 W K−1 m−1 to 1.6 W K−1 m−1, one order of magnitude. This behavior is the same for the contact resistance varying from 0.8 m2 K W−1 to 11×10−4 m2 K W−1. For dry PTLs, the thermal conductivity decreases with increasing polytetrafluorethylene (PTFE) content and increases with residual water. These effects are explained by the behavior of air, water, and PTFE in between the PTL fibers. It is also found that Toray papers of differing thickness exhibit different thermal conductivities.
We report the through-plane thermal conductivities of the several widely used carbon porous transport layers (PTLs or GDLs) and their thermal contact resistance to an aluminium polarisation plate. We report these values both for wet and dry samples and at different compaction pressures. We show that depending on the type of PTL and possible residual water, the thermal conductivity of the materials varies from 0.15 to 1.6 W K−1 m−1 — one order of magnitude. This behaviour is the same for the contact resistance varying from 0.8 to 11 10−4 m2 K W−1. For dry PTLs the thermal conductivity decreases with increasing PTFE content and increases with residual water. These effects are explained by the behaviour of air, water and PTFE in between the PTL fibres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.