Simple SummaryUnderstanding of how free-range laying hens on commercial farms utilize the outdoor space provided is limited. In order to optimise use of the range, it is important to understand whether hens vary in their ranging behaviour, both between and within individual hens. In our study, we used individual tracking technology to assess how hens in two commercial free-range flocks used the range and whether they varied in their use of the range. We assessed use of three areas at increasing distance from the shed; the veranda [0–2.4 m], close range [2.4–11.4 m], and far range [>11.4 m]. Most hens accessed the range every day (68.6% in Flock A, and 82.2% in Flock B), and most hens that ranged accessed all three areas (73.7% in Flock A, and 84.5% in Flock B). Hens spent half of their time outside in the veranda adjacent to the shed. We found that some hens within the flocks would range consistently (similar duration and frequency) daily, whereas others would range inconsistently. Hens that were more consistent in their ranging behaviour spent more time on the range overall than those that were inconsistent. These different patterns of range use should be taken into account to assess the implications of ranging for laying hens. AbstractIn this exploratory study, we tracked free-range laying hens on two commercial flocks with Radio Frequency Identification (RFID) technology with the aim to examine individual hen variation in range use. Three distinct outdoor zones were identified at increasing distances from the shed; the veranda [0–2.4 m], close range [2.4–11.4 m], and far range [>11.4 m]. Hens’ movements between these areas were tracked using radio frequency identification technology. Most of the hens in both flocks (68.6% in Flock A, and 82.2% in Flock B) accessed the range every day during the study. Of the hens that accessed the range, most hens accessed all three zones (73.7% in Flock A, and 84.5% in Flock B). Hens spent half of their time outdoors in the veranda area. Within-individual consistency of range use (daily duration and frequency) varied considerably, and hens which were more consistent in their daily range use spent more time on the range overall (p < 0.001). Understanding variation within and between individuals in ranging behaviour may help elucidate the implications of ranging for laying hens.
Laying hens housed in free-range systems have access to an outdoor range, and individual hens within a flock differ in their ranging behaviour. Whether there is a link between ranging and laying hen welfare remains unclear. We analysed the relationships between ranging by individual hens on a commercial free-range layer farm and behavioural, physiological and health measures of animal welfare. We hypothesised that hens that access the range more will be (1) less fearful in general and in response to novelty and humans, (2) have better health in terms of physical body condition and (3) have a reduced physiological stress response to behavioural tests of fear and health assessments than hens that use the range less. Using radio frequency identification tracking across two flocks, we recorded individual hens' frequency, duration and consistency of ranging. We also assessed how far hens ventured into the range based on three zones: 0 to 2.4, 2.4 to 11.4 or >11.4 m from the shed. We assessed hen welfare using a variety of measures including: tonic immobility, open field, novel object, human approach, and human avoidance (HAV) behavioural tests; stress-induced plasma corticosterone response and faecal glucocorticoid metabolites; live weight, comb colour, and beak, plumage, footpad, and keel bone condition. Range use was positively correlated with plasma corticosterone response, faecal glucocorticoid metabolites, and greater flight distance during HAV. Hens that used the range more, moved towards rather than away from the novel object more often than hens that ranged less. Distance ranged from the shed was significantly associated with comb colour and beak condition, in that hens with darker combs and more intact beaks ranged further. Overall the findings suggest that there is no strong link between outdoor range usage and laying hen welfare. Alternatively, it may be that hens that differed in their ranging behaviour showed few differences in measures of welfare because free-range systems provide hens with adequate choice to cope with their environment. Further research into the relationship between individual range access and welfare is needed to test this possibility.
The outdoor range in free-range, egg-production systems contains features that aim to promote the performance of natural behaviours. It is unclear what features of the range laying hens prefer and how these influence hen behaviour. We hypothesised that hens would demonstrate a preference for features of the environment in which their ancestor evolved, such as relatively dense vegetation, within the outdoor range and that the behavioural time budget of hens will differ between distinct environments. Characteristics of the outdoor range in one free-range commercial egg farm were mapped and four distinct environments ('locations') were identified based on ground substrate and cover (Wattle Tree, Gum Tree, Bare Earth and Sapling). The number of hens accessing each location and behavioural time budget of these hens was recorded over a three-week period during the southern hemisphere summer (January-February). Hens showed a clear preference for the Wattle Tree and Gum Tree locations; however, a significant interaction between location and time of day suggested that the hens' preference for different locations changed throughout the day. The most common behaviours displayed by hens were foraging, preening, locomotion, resting and vigilance, and most behaviours were influenced by the interaction between location and time of day. Overall, a wider variety of behaviours were performed in the highly preferred environments, but not all behaviours were performed equally within each environment throughout the day. Understanding what features hens prefer in the outdoor range and how this influences the performance of natural behaviours is important in promoting the welfare of hens in free-range production.
Weta are giant, flightless orthopterans that are endemic to New Zealand. Although they are known to consume fleshy fruits and disperse seeds after gut passage, which is unusual among insects, their effectiveness as seed dispersal mutualists is debated. We conducted a series of laboratory experiments on alpine scree weta (Deinacrida connectens) and mountain snowberries (Gaultheria depressa) to investigate how fruit consumption rates, the proportion of ingested seeds dispersed intact and weta movement patterns vary with weta body sizes. On average weta dispersed 252 snowberry seeds nightly and travelled at a rate of 4 m min -1 . However, seed dispersal effectiveness varied over three orders of magnitude and was strongly associated with body sizes. Smaller weta consumed few snowberry seeds and acted primarily as seed predators. On the other hand, the largest weta consumed and dispersed thousands of seeds each night and appear to be capable of transporting seeds over large distances. Overall results indicate that scree weta shift from being weakly interacting seed predators to strongly interacting, effective seed dispersers as they increase in size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.