The larvae of Odonata are limnic predators capable of catching their prey using a highly modified mouthpart – the labium. Driven by a unique dual catapult mechanism, the apparatus can reach peak accelerations of up to 114.5m/s2. Yet little is known about the kinematics of the predatory strike in an ecological context. Here we show how different ambient temperatures affect the predatory strike and the avoidance reaction of prey items of Odonata larvae. We found that the extension velocity of the labial mask decreases significantly with the ambient temperature both in dragonflies and damselflies. However, temperature has lesser impact on the predatory strike itself than on directly muscle driven movements in both the predator and prey items. This contradicts the previous assumption that catapult mechanisms in insects are unaffected by temperature. Our results indicate that the prehensile labial mask is driven by a series-elastic catapult; a mechanism similar to the temperature dependent jump of frogs, where muscle and spring action are tightly linked. Our study provides novel insights into the predatory strike of Odonata larvae and offers a new ecological perspective on catapult mechanisms in arthropods in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.