BAP31 is an endoplasmic reticulum protein-sorting factor that associates with newly synthesized integral membrane proteins and controls their fate (i.e., egress, retention, survival, or degradation). BAP31 is itself an integral membrane protein and a constituent of several large protein complexes. Here, we show that a part of the BAP31 population interacts with two components of the Sec61 preprotein translocon, Sec61beta and TRAM. BAP31 associates with the N terminus of one of its newly synthesized client proteins, the DeltaF508 mutant of CFTR, and promotes its retrotranslocation from the ER and degradation by the cytoplasmic 26S proteasome system. Depletion of BAP31 reduces the proteasomal degradation of DeltaF508 and permits a significant fraction of the surviving protein to reach the cell surface. Of note, BAP31 also associates physically and functionally with the Derlin-1 protein disclocation complex in the DeltaF508 degradation pathway. Thus, BAP31 operates at early steps to deliver newly synthesized CFTRDeltaF508 to its degradation pathway.
Mitochondria form a highly dynamic reticular network in living cells, and undergo continuous fusion/fission events and changes in ultrastructural architecture. Although significant progress has been made in elucidating the molecular events underlying these processes, their relevance to normal cell function remains largely unexplored. Emerging evidence, however, suggests an important role for mitochondrial dynamics in cellular apoptosis. The mitochondria is at the core of the intrinsic apoptosis pathway, and provides a reservoir for protein factors that induce caspase activation and chromosome fragmentation. Additionally, mitochondria modulate Ca2+ homeostasis and are a source of various metabolites, including reactive oxygen species, that have the potential to function as second messengers in response to apoptotic stimuli. One of the mitochondrial factors required for activation of caspases in most intrinsic apoptotic pathways, cytochrome c, is largely sequestered within the intracristae compartment, and must migrate into the boundary intermembrane space in order to allow passage across the outer membrane to the cytosol. Recent evidence argues that inner mitochondrial membrane dynamics regulate this process. Here, we review the contribution of mitochondrial dynamics to the intrinsic apoptosis pathway, with emphasis on the inner membrane.
Cotranslational translocation of polypeptides into the ER is controlled by the dynamic interaction of ribosome and translocon components. Analysis of the steps involved in this process by high resolution techniques such as gel electrophoresis is precluded by the high molecular masses of these complexes. We show, here, that modifications to standard native electrophoresis protocols can overcome these problems and lead to an increase in mass range and resolution. Using the modified technique, we show that ER ribosome anchored membrane protein (RAMP) complexes resolve into 3 stable and semistable complexes which range in size between 4 and 8 MDa and are sensitive to relevant concentrations of divalent metals. We demonstrate the molecular composition of the complexes and identify a number of modular components that differentiate them. The components that are common to all three RAMP complexes include the OST translocon subcomplex, Glucosidase I and microtubule tethering protein CLIMP63. The two larger complexes further include the kinesin motor binding protein p180 and Sec61, and the largest complex includes the TRAP translocon component and apoptotic regulator BAP31. On the lumenal side, the BiP cochaperone ERdj3 resides with the three RAMP complexes. Our observations may hint at how subcompartmentalization is achieved in the ER membrane continuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.