The study of cellular migration dynamics and strategies plays a relevant role in the understanding of both physiological and pathological processes. An important example could be the link between cancer cell motility and tumor evolution into metastatic stage. These strategies can be strongly influenced by the extracellular environment and the consequent mechanical constrains. In this framework, the possibility to study the behavior of single cells when subject to specific topological constraints could be an important tool in the hands of biologists. Two-photon polymerization is a sub-micrometric additive manufacturing technique that allows the fabrication of 3D structures in biocompatible resins, enabling the realization of ad hoc biochips for cell motility analyses, providing different types of mechanical stimuli. In our work, we present a new strategy for the realization of multilayer microfluidic lab-on-a-chip constructs for the study of cell motility which guarantees complete optical accessibility and the possibility to freely shape the migration area, to tailor it to the requirements of the specific cell type or experiment. The device includes a series of micro-constrictions that induce different types of mechanical stress on the cells during their migration. We show the realization of different possible geometries, in order to prove the versatility of the technique. As a proof of concept, we present the use of one of these devices for the study of the motility of murine neuronal cancer cells under high physical confinement, highlighting their peculiar migration mechanisms.
During the epithelial-to-mesenchymal transition, the intracellular cytoskeleton undergoes severe reorganization which allows epithelial cells to transition into a motile mesenchymal phenotype. Among the different cytoskeletal elements, the intermediate filaments keratin (in epithelial cells) and vimentin (in mesenchymal cells) have been demonstrated to be useful and reliable histological markers. In this study, we assess the potential invasiveness of six human breast carcinoma cell lines and two mouse fibroblasts cells lines through single cell migration assays in confinement. We find that the keratin and vimentin networks behave mechanically the same when cells crawl through narrow channels and that vimentin protein expression does not strongly correlate to single cells invasiveness. Instead, we find that what determines successful migration through confining spaces is the ability of cells to mechanically switch from a substrate-dependent stress fibers based contractility to a substrate-independent cortical contractility, which is not linked to their tumor phenotype.
Purpose The fetal membranes are essential for the maintenance of pregnancy, and their integrity until parturition is critical for both fetal and maternal health. Preterm premature rupture of the membranes (pPROM) is known to be an indicator of preterm birth, but the underlying architectural and mechanical changes that lead to fetal membrane failure are not yet fully understood. The aim of this study was to gain new insights into the anatomy of the fetal membrane and to establish a tissue processing and staining protocol suitable for future prospective cohort studies. Methods In this proof of principle study, we collected fetal membranes from women undergoing vaginal delivery or cesarean section. Small membrane sections were then fixed, stained for nucleic acids, actin, and collagen using fluorescent probes, and subsequently imaged in three dimensions using a spinning disk confocal microscope. Results Four fetal membranes of different types were successfully processed and imaged after establishing a suitable protocol. Cellular and nuclear outlines are clearly visible in all cases, especially in the uppermost membrane layer. Focal membrane (micro) fractures could be identified in several samples. Conclusion The presented method proves to be well suited to determine whether and how the occurrence of membrane (micro) fractures and cellular jamming correlate with the timing of membrane rupture and the mode of delivery. In future measurements, this method could be combined with mechanical probing techniques to compare optical and mechanical sample information.
Purpose The fetal membrane is essential for the maintenance of pregnancy, and its integrity until parturition is critical for both fetal and maternal health. Preterm premature rupture of the membranes (pPROM) is known to be an indicator of preterm birth, but the underlying architectural and mechanical changes that lead to fetal membrane failure are not yet fully understood. The aim of this study was to gain new insights into the anatomy of the fetal membrane and to establish a tissue processing and staining protocol suitable for future prospective cohort studies. Methods In this proof of principle study, fetal membranes were collected from both vaginal delivery and cesarean section. Small membrane sections were then fixed, fluorescently stained for nucleic acids, actin, and collagen, and subsequently imaged in three dimensions using a spinning disk confocal microscope. Results Four fetal membranes of different types were successfully processed and imaged after establishing a suitable protocol. Cellular and nuclear outlines are clearly visible in all cases, especially in the uppermost membrane layer. Focal membrane (micro)fractures could be identified in several samples. Conclusion The presented method proves to be well suited to determine whether and how the occurrence of membrane (micro)fractures and cellular jamming correlates with the timing of membrane rupture and the mode of delivery. In future measurements, this method could possibly be combined with mechanical probing techniques to compare optical and mechanical sample information.
<p>In the preparation of the global kilometre-resolution coupled ICON climate model, it is necessary to calibrate cloud microphysical parameters. Here we explore the avenue towards optimally calibrating such parameters using machine learning. The emulator developed by Watson-Parris et al. (2021) is employed in combination with a perturbed-parameter ensemble of limited-area atmosphere-only ICON simulations for the North Atlantic ocean. In a first step, the autoconversion scaling parameter is calibrated, using satellite-retrieved top-of-atmosphere and bottom-of-atmosphere radiation fluxes. For this purpose, limited area simulations of the north atlantic are performed with ICON. In which different cloud microphysical parameters are changed, in order to evaluate possible influences on the output of radiation fluxes.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.