Peroxisome proliferator-activated receptor (PPAR)-c is expressed in alveolar macrophages. The anti-inflammatory potential of the PPAR-c ligands rosiglitazone and pioglitazone were investigated using in vitro alveolar macrophage models and in vivo animal models relevant to chronic obstructive pulmonary disease (COPD).PPAR-c protein and gene expression in COPD alveolar macrophages was compared with control smokers and never-smokers. COPD macrophages were used to investigate the effects of PPAR-c ligands and corticosteroids on lipopolysaccharide-induced cytokine production, alternative macrophage activation (M2) gene expression and efferocytosis. The effects of PPAR-c ligands in a subchronic tobacco smoke model in mice were investigated.PPAR-c protein expression was similar in COPD patients compared to controls, although increased gene expression levels were observed in COPD patients and control smokers compared to never-smokers. PPAR-c ligands reduced tumour necrosis factor-a and CC chemokine ligand-5, but not CXC chemokine ligand-8, in COPD alveolar macrophages; these effects were generally less than those of the corticosteroid dexamethasone. Rosiglitazone increased M2 gene expression and enhanced efferocytosis of apoptotic neutrophils. Rosiglitazone and pioglitazone attenuated airway neutrophilia in a corticosteroid-resistant mouse model of pulmonary inflammation.We show biological actions of PPAR-c agonists on corticosteroid-resistant disease, tobacco smokeinduced pulmonary inflammation, skewing of macrophage phenotype and clearance of apoptotic neutrophils.@ERSpublications Biological actions of a PPAR-c agonist shown in COPD-relevant models may affect progression and side-effects in patients
SummaryChronic obstructive pulmonary disease (COPD) is characterized by an abnormal innate immune response. We have investigated the changes in the innate immune response of COPD alveolar macrophages exposed to both cigarette smoke and Toll-like receptor (TLR) stimulation. COPD and control alveolar macrophages were exposed to cigarette smoke extract (CSE) followed by TLR-2, -4 and -5 ligands [Pam3CSK4, lipopolysaccharide (LPS) and phase I flagellin (FliC), respectively] or non-typeable Haemophilus influenzae (NTHi). CSE exposure suppressed TLR-induced tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 and regulated on activation, normal T cell expressed and secreted (RANTES) production in both COPD and control alveolar macrophages, but had no effect on interleukin 8 (CXCL8) production. Similarly, CSE suppressed NTHi-induced TNF-α but not NTHiinduced CXCL8 production in COPD alveolar macrophages. Gene expression analysis showed that CSE suppressed LPS-induced TNF-α transcription but not CXCL8 transcription in COPD alveolar macrophages. The dampening effect of CSE on LPS-induced cytokine production was associated with a reduction in p38, extracellular signal regulated kinase (ERK) and p65 activation. In conclusion, CSE caused a reduced innate immune response in COPD alveolar macrophages, with the exception of persistent CXCL8 production. This could be a mechanism by which alveolar macrophages promote neutrophil chemotaxis under conditions of oxidative stress and bacterial exposure.
Mammalian toll-like receptor 5 (TLR5) senses flagellin of several bacterial species and has been described to activate the innate immune system. To assess the role of bovine TLR5 (boTLR5) in the cattle system, we cloned and successfully expressed boTLR5 in human embryonic kidney (HEK) 293 cells, as indicated by quantitative PCR and confocal microscopy. However, in contrast to huTLR5-transfected cells, exposure of boTLR5-transfected cells to flagellin neither activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nor CXCL8 production. Subsequent comparison of the flagellin response induced in human and bovine primary macrophages revealed that flagellin did not lead to phosphorylation of major signalling molecules. Furthermore, the CXCL8 and TNFα response of primary bovine macrophages stimulated with flagellin was very low compared to that observed in human primary macrophages. Our results indicate that cattle express a functional TLR5 albeit with different flagellin sensing qualities compared to human TLR5. However, boTLR5 seemed to play a different role in the bovine system compared to the human system in recognizing flagellin, and other potentially intracellular expressed receptors may play a more important role in the bovine system to detect flagellin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.