The N-methyl D-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine. Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% identical in sequence. These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1). Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate- and NMDA-activated currents only when they were in heteromeric configurations with NR1. NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity. Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution.
Recording of glutamate-activated currents in membrane patches was combined with RT-PCR-mediated AMPA receptor (AMPAR) subunit mRNA analysis in single identified cells of rat brain slices. Analysis of AMPARs in principal neurons and interneurons of hippocampus and neocortex and in auditory relay neurons and Bergmann glial cells indicates that the GluR-B subunit in its flip version determines formation of receptors with relatively slow gating, whereas the GluR-D subunit promotes assembly of more rapidly gated receptors. The relation between Ca2+ permeability of AMPAR channels and the relative GluR-B mRNA abundance is consistent with the dominance of this subunit in determining the Ca2+ permeability of native receptors. The results suggest that differential expression of GluR-B and GluR-D subunit genes, as well as splicing and editing of their mRNAs, account for the differences in gating and Ca2+ permeability of native AMPAR channels.
Database search has led to the identification of a family of proteins, the pannexins, which share some structural features with the gap junction forming proteins of invertebrates and vertebrates. The function of these proteins has remained unclear so far. To test the possibility that pannexins underlie electrical communication in the brain, we have investigated their tissue distribution and functional properties. Here, we show that two of these genes, pannexin 1 (Px1) and Px2, are abundantly expressed in the CNS. In many neuronal cell populations, including hippocampus, olfactory bulb, cortex and cerebellum, there is coexpression of both pannexins, whereas in other brain regions, e.g., white matter, only Px1-positive cells were found. On expression in Xenopus oocytes, Px1, but not Px2 forms functional hemichannels. Coinjection of both pannexin RNAs results in hemichannels with functional properties that are different from those formed by Px1 only. In paired oocytes, Px1, alone and in combination with Px2, induces the formation of intercellular channels. The functional characteristics of homomeric Px1 versus heteromeric Px1͞Px2 channels and the different expression patterns of Px1 and Px2 in the brain indicate that pannexins form cell type-specific gap junctions with distinct properties that may subserve different functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.