The sodium iodide symporter (NIS) is required for iodide uptake, which facilitates thyroid hormone biosynthesis. NIS has been exploited for over 75 years in ablative radioiodine (RAI) treatment of thyroid cancer, where its ability to transport radioisotopes depends on its localization to the plasma membrane. The advent of NIS-based in vivo imaging and theranostic strategies in other malignancies and disease modalities has recently increased the clinical importance of NIS. However, NIS trafficking remains illdefined. Here, we used tandem mass spectrometry followed by coimmunoprecipitation and proximity ligation assays to identify and validate two key nodes-ADP-ribosylation factor 4 (ARF4) and valosin-containing protein (VCP)-controlling NIS trafficking. Using cell-surface biotinylation assays and highly inclined and laminated optical sheet microscopy, we demonstrated that ARF4 enhanced NIS vesicular trafficking from the Golgi to the plasma membrane, whereas VCP-a principal component of endoplasmic reticulum (ER)-associated degradation-governed NIS proteolysis. Gene expression analysis indicated VCP expression was particularly induced in aggressive thyroid cancers and in patients who had poorer outcomes following RAI treatment. Two repurposed FDA-approved VCP inhibitors abrogated VCP-mediated repression of NIS function, resulting in significantly increased NIS at the cell-surface and markedly increased RAI uptake in mouse and human thyroid models. Collectively, these discoveries delineate NIS trafficking and highlight the new possibility of systemically enhancing RAI therapy in patients using FDAapproved drugs.Significance: These findings show that ARF4 and VCP are involved in NIS trafficking to the plasma membrane and highlight the possible therapeutic role of VCP inhibitors in enhancing radioiodine effectiveness in radioiodine-refractory thyroid cancer.
Differentiated thyroid cancer is the most common endocrine malignancy and the incidence is increasing rapidly worldwide. Appropriate diagnosis and post-treatment monitoring of patients with thyroid tumours are critical. Fine needle aspiration cytology remains the gold standard for diagnosing thyroid cancer, and although there have been significant refinements to this technique, diagnostic surgery is often required for patients suspected to have malignancy. Serum thyroid-stimulating hormone (TSH) is higher in patients with malignant thyroid nodules than in those with benign disease, and TSH is proportionally increased in more aggressive tumours. Importantly, we have shown that the pre-operative serum TSH concentration independently predicts the presence of malignancy in subjects presenting with thyroid nodules. Establishing the use of TSH measurements in algorithms identifying high-risk thyroid nodules in routine clinical practice represents an exciting, cost-efficient and non-invasive approach to optimise thyroid cancer diagnosis. Binding of TSH to receptors on thyrocytes stimulates a number of growth promoting pathways both in normal and malignant thyroid cells, and TSH suppression with high doses of levothyroxine is routinely used after thyroidectomy to prevent cancer recurrence, especially in high-risk tumours. This review examines the relationship between serum TSH and thyroid cancer and reflects on the clinical potential of TSH measurements in diagnosis and disease monitoring.
Read et al. investigate the key druggable non-canonical pathways to recover function of the sodium iodide symporter (NIS). They identify mechanisms in NIS intracellular processing that could be exploited therapeutically for patients treated with radioiodide who typically have poorer clinical outcomes.
The proto-oncogene PTTG and its binding partner PBF have been widely studied in multiple cancer types, particularly thyroid and colorectal, but their combined role in tumourigenesis is uncharacterised. Here, we show for the first time that together PTTG and PBF significantly modulate DNA damage response (DDR) genes, including p53 target genes, required to maintain genomic integrity in thyroid cells. Critically, DDR genes were extensively repressed in primary thyrocytes from a bitransgenic murine model (Bi-Tg) of thyroid-specific PBF and PTTG overexpression. Irradiation exposure to amplify p53 levels further induced significant repression of DDR genes in Bi-Tg thyrocytes (P=2.4x10-4) compared to either PBF- (P=1.5x10-3) or PTTG-expressing thyrocytes (P=NS). Consistent with this, genetic instability was greatest in Bi-Tg thyrocytes (mean GI index of 35.8±2.6%), as well as significant induction of gross chromosomal aberrations in thyroidal TPC-1 cells following overexpression of PBF and PTTG. We extended our findings to human thyroid cancer using TCGA datasets (n=322) and found striking correlations with PBF and PTTG expression in well-characterised DDR gene panel RNA-seq data. In addition, genetic associations and transient transfection identified PBF as a downstream target of the RTK-BRAF signalling pathway, emphasising a role for PBF as a novel component in a pathway well-described to drive neoplastic growth. We also showed that overall survival (P=1.91x10-5) and disease-free survival (P=4.9x10-5) was poorer for TCGA patients with elevated tumoural PBF/PTTG expression and mutationally activated BRAF. Together our findings indicate that PBF and PTTG have a critical role in promoting thyroid cancer that is predictive of poorer patient outcome.
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and poses a significant health burden due to its rising incidence. Although the proto-oncogene pituitary tumor-transforming gene 1 (PTTG) predicts poor patient outcome, its mechanisms of action are incompletely understood. We show here that the protein PBF modulates PTTG function, is overexpressed in HNSCC tumors, and correlates with significantly reduced survival. Lentiviral shRNA attenuation of PTTG or PBF expression in HNSCC cells with either wild-type or mutant p53, and with and without HPV infection, led to dysregulated expression of p53 target genes involved in DNA repair and apoptosis. Mechanistically, PTTG and PBF affected each other's interaction with p53 and cooperated to reduce p53 protein stability in HNSCC cells independently of HPV. Depletion of either PTTG or PBF significantly repressed cellular migration and invasion and impaired colony formation in HNSCC cells, implicating both proto-oncogenes in basic mechanisms of tumorigenesis. Patients with HNSCC with high tumoral PBF and PTTG had the poorest overall survival, which reflects a marked impairment of p53-dependent signaling. These findings reveal a complex and novel interrelationship between the expression and function of PTTG, PBF, and p53 in human HNSCC that significantly influences patient outcome. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.