Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.
The leaffooted plant bug, Leptoglossus zonatus (Dallas) (Hemiptera: Coreidae) is polyphagous and widely distributed in the Western Hemisphere. Although it has been recorded in California since around 1900, it has become a more common pest in almonds in the last decade. Other studies have shown that an established insect can become a pest when a new genotype is introduced. This study investigated the distribution of two lineages (strains) of L. zonatus in the Western Hemisphere. Specimens from the Leptoglossus collection in the national insect collection in Mexico were used to extract DNA and sequence the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene, for use in population genetic and phylogenetic analyses. New sequences from Mexico, Central and South America were combined with those available in GenBank, from California and Brazil. Two lineages (strains) of L. zonatus were uncovered. One lineage occurs in California, Mexico and Ecuador. The second lineage is more widespread and found in California, Mexico, Guatemala, Nicaragua, Bolivia and Brazil. The haplotype number and diversity, and nucleotide diversity, were found for samples from California, Mexico, and Brazil, for the two lineages, and for all 118 sequences combined. All sequences combined produced five haplotypes, and a haplotype diversity of 0.54. California and Brazil had 3 haplotypes each, with one haplotype shared (5 total). Haplotype diversity in California and in Brazil were 0.526 and 0.505, respectively. A haplotype network found that one haplotype was most abundant and widespread. The small number of haplotypes, a range expansion, and economic pest status of L. zonatus in California, all contribute to this insect being a potentially invasive insect pest.
Cis-regulatory elements such as enhancers play critical regulatory roles in modulating developmental transcription programs and driving cell-type specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted the self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identify putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in normal and pathogenic brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.