A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.uk
Heat stress is detrimental to food-producing animals and animal productivity remains suboptimal despite the use of heat abatement strategies during summer. Global warming and the increase of frequency and intensity of heatwaves are likely to continue and, thus, exacerbate the problem of heat stress. Heat stress leads to the impairment of physiological and cellular functions of ectothermic and endothermic animals. Therefore, it is critical to conceive ways of protecting animals against the pathological effects of heat stress. In experiments with endothermic animals highly sensitive to heat (Bos taurus), we have previously reported that heat-induced systemic inflammation can be ameliorated in part by nutritional interventions. The experiments conducted in this report described molecular and physiological adaptations to heat stress using Drosophila melanogaster and dairy cow models. In this report, we expand previous work by first demonstrating that the addition of a postbiotic from Aspergillus oryzae (AO) into the culture medium of ectothermic animals (Drosophila melanogaster) improved survival to heat stress from 30 to 58%. This response was associated with downregulation of genes involved in the modulation of oxidative stress and immunity, most notably metallothionein B, C, and D. In line with these results, we subsequently showed that the supplementation with the AO postbiotic to lactating dairy cows experiencing heat stress decreased plasma concentrations of serum amyloid A and lipopolysaccharide-binding protein, and the expression of interleukin-6 in white blood cells. These alterations were paralleled by increased synthesis of energy-corrected milk and milk components, suggesting enhanced nutrient partitioning to lactogenesis and increased metabolic efficiency. In summary, this work provides evidence that a postbiotic from AO enhances thermal tolerance likely through a mechanism that entails reduced inflammation.
Co-supplementation of methyl donors may lower hepatic lipid content in transition cows. To define the ability of methyl donor supplementation (MDS) to reduce hepatic lipid content and modify the plasma lipidome, 30 multiparous Holstein cows (2.04 ± 0.69 lactations; 689 ± 58 kg of body weight; 3.48 ± 0.10 units of body condition score) were fed a ration with or without rumen-protected methyl donors (22 g/d of Met, 10 g/d of choline chloride, 3 g/d of betaine, 96 mg/d of riboflavin, and 1.4 mg/d of vitamin B 12 ) from d −28 before expected calving through d 14 postpartum. Cows were randomly enrolled based on predefined selection criteria (body condition score and parity). Base diets without MDS were formulated for gestation (15.4% crude protein with a predicted Lys-to-Met ratio of 3.25; 1.44 Mcal of net energy for lactation/ kg of dry matter) and lactation (16.6% crude protein with a predicted Lys-to-Met ratio of 3.36; 1.64 Mcal of net energy for lactation/kg of dry matter). Blood sampling occurred from d −28 relative to expected calving through d 14 postpartum. Liver tissue was biopsied at d −28 relative to expected calving and on d 5 and 14 postpartum. In addition to routine analyses, serum AA concentrations on d 10 and 12 were quantified using mass spectrometry. Plasma triacylglycerol (TAG) and cholesteryl esters (CE) were qualitatively measured using time-of-flight mass spectrometry. Data were analyzed using a mixed model with repeated measures. Dry matter intake and milk yield were not modified by MDS. The transition from d −28 relative to expected parturition to d 14 postpartum was characterized by increased plasma fatty acid (0.15 to 0.71 mmol/L) and β-hydroxybutyrate (0.34 to 0.43 mmol/L) levels and liver lipid content (3.91 to 9.16%). Methyl donor supplementation increased the serum Met level by 26% and decreased the serum Lys-to-Met ratio by 21% on d 10 and 12, respectively. Moreover, the increase in hepatic lipid content from d 5 through 14 postpartum was suppressed with MDS relative to control (3.57 vs. −0.29%). Dietary MDS modified the TAG and CE lipidome. For example, MDS increased plasma TAG 46:3 (carbon number: double bond) by 116% relative to control cows on d 5 postpartum. Moreover, MDS tended to increase plasma CE 34:6. In contrast, MDS lowered plasma TAG 54:8 by 39% relative to control cows on d 5 postpartum. We concluded that in the absence of gains in dry matter intake and milk and milk protein yields, dietary MDS slows the progression of hepatic lipid accumulation and modifies the plasma TAG lipidome in transition cows.
Type I modular polyketide synthases (PKSs), which are responsible for the biosynthesis of many biologically active agents, possess a ketosynthase (KS) domain within each module to catalyze chain elongation. Acylation of the KS active site Cys residue is followed by transfer to malonyl‐ACP to yield an extended β‐ketoacyl chain (ACP=acyl carrier protein). To date, the precise contribution of KS selectivity in controlling product fidelity has been unclear. Six KS domains from trans‐acyltransferase (trans‐AT) PKSs were subjected to a mass spectrometry based elongation assay, and higher substrate selectivity was identified for the elongating step than in preceding acylation. A close correspondence between the observed KS selectivity and that predicted by phylogenetic analysis was seen. These findings provide insights into the mechanism of KS selectivity in this important group of PKSs, can serve as guidance for engineering, and show that targeted mutagenesis can be used to expand the repertoire of acceptable substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.