Neuromodulators such as monoamines are often expressed in neurons that also release at least one fast-acting neurotransmitter. The release of a combination of transmitters provides both "classical" and "modulatory" signals that could produce diverse and/or complementary effects in associated circuits. Here, we establish that the majority of Drosophila octopamine (OA) neurons are also glutamatergic and identify the individual contributions of each neurotransmitter on sex-specific behaviors. Males without OA display low levels of aggression and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but without a concurrent increase in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT puncta differ in localization suggesting spatial differences in OA signaling. Our findings establish a previously undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples aggression from OA-dependent courtship-related behavior. These results indicate that dual neurotransmission can increase the efficacy of individual neurotransmitters while maintaining unique functions within a multi-functional social behavior neuronal network.
Proteins containing a methyl-CpG-binding domain (MBD) bind 5mC and convert the methylation pattern information into appropriate functional cellular states. The correct readout of epigenetic marks is of particular importance in the nervous system where abnormal expression or compromised MBD protein function, can lead to disease and developmental disorders. Recent evidence indicates the genome of Drosophila melanogaster is methylated and two MBD proteins, dMBD2/3 and dMBD-R2, are present. Are Drosophila MBD proteins required for neuronal function, and as MBD-containing proteins have diverged and evolved, does the MBD domain retain the molecular properties required for conserved cellular function across species? To address these questions, we expressed the human MBD-containing protein, hMeCP2, in distinct amine neurons and quantified functional changes in sleep circuitry output using a high throughput assay in Drosophila. hMeCP2 expression resulted in phase-specific sleep loss and sleep fragmentation with the hMeCP2-mediated sleep deficits requiring an intact MBD-domain. Reducing endogenous dMBD2/3 and dMBD-R2 levels also generated sleep fragmentation, with an increase in sleep occurring upon dMBD-R2 reduction. To examine if hMeCP2 and dMBD-R2 are targeting common neuronal functions, we reduced dMBD-R2 levels in combination with hMeCP2 expression and observed a complete rescue of sleep deficits. Furthermore, chromosomal binding experiments indicate MBD-R2 and MeCP2 associate on shared genomic loci. Our results provide the first demonstration that Drosophila MBD-containing family members are required for neuronal function and suggest the MBD domain retains considerable functional conservation at the whole organism level across species.
Reproductive isolation and speciation are driven by the convergence of environmental and genetic variation. The integration of these variation sources is thought to occur through epigenetic marks including DNA methylation. Proteins containing a methyl-CpG-binding domain (MBD) bind methylated DNA and interpret epigenetic marks, providing a dynamic yet evolutionarily adapted cellular output. Here, we report the Drosophila MBD-containing proteins, dMBD-R2 and dMBD2/3, contribute to reproductive isolation and survival behavioral strategies. Drosophila melanogaster males with a reduction in dMBD-R2 specifically in octopamine (OA) neurons exhibit courtship toward divergent interspecies D. virilis and D. yakuba females and a decrease in conspecific mating success. Conspecific male-male courtship is increased between dMBD-R2-deficient males while aggression is reduced. These changes in adaptive behavior are separable as males with a hypermethylated OA neuronal genome exhibited a decrease in aggression without altering male-male courtship. These results suggest Drosophila MBD-containing proteins are required within the OA neural circuitry to inhibit interspecies and conspecific male-male courtship and indicate that the genetically hard-wired neural mechanisms enforcing behavioral reproductive isolation include the interpretation of the epigenome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.