Background: In pediatric health care, non-pharmacological interventions such as music therapy have promising potential to complement traditional medical treatment options in order to facilitate recovery and well-being. Music therapy and other music-based interventions are increasingly applied in the clinical treatment of children and adolescents in many countries world-wide. The purpose of this overview is to examine the evidence regarding the effectiveness of music therapy and other music-based interventions as applied in pediatric health care. Methods: Surveying recent literature and summarizing findings from systematic reviews, this overview covers selected fields of application in pediatric health care (autism spectrum disorder; disability; epilepsy; mental health; neonatal care; neurorehabilitation; pain, anxiety and stress in medical procedures; pediatric oncology and palliative care) and discusses the effectiveness of music interventions in these areas. Results: Findings show that there is a growing body of evidence regarding the beneficial effects of music therapy, music medicine, and other music-based interventions for children and adolescents, although more rigorous research is still needed. The highest quality of evidence for the positive effects of music therapy is available in the fields of autism spectrum disorder and neonatal care. Conclusions: Music therapy can be considered a safe and generally well-accepted intervention in pediatric health care to alleviate symptoms and improve quality of life. As an individualized intervention that is typically provided in a person-centered way, music therapy is usually easy to implement into clinical practices. However, it is important to note that to exploit the potential of music therapy in an optimal way, specialized academic and clinical training and careful selection of intervention techniques to fit the needs of the client are essential.
Riverine systems often spread non-native species, yet the co-occurring impacts of introduced riparian vegetation on aquatic- and terrestrial-derived resources are unknown. We compared aquatic and terrestrial arthropod communities and their flux into and out of streams in riparian reaches invaded and uninvaded by Robinia neomexicana, a woody plant introduced to a western Colorado watershed. We found that invaded reaches had fewer terrestrial arthropods collected off foliage, conceivably because of the plant’s later leaf-out phenology. Overall, seasonal and annual factors best described terrestrial and aquatic arthropod communities. However, when we evaluated vegetation and stream characteristics in lieu of season and year, we found terrestrial arthropod biomass and richness were negatively related to cover of R. neomexicana and positively related to vegetative cover, forb cover, and vertical vegetation structure. Our results suggest ecosystems respond to landscape variation differently, where directly related food web components (i.e., terrestrial arthropods on introduced vegetation) respond stronger than more distally related constituents (i.e., aquatic insects).
Non-native plants can impact riparian ecosystem function through diverse terrestrial and aquatic pathways, with cascading effects on food webs. Invasion-mediated vegetation changes can depress terrestrial arthropod communities and alter arthropod flux across the aquatic-terrestrial interface. We investigated the effects of a non-native woody plant, Robinia neomexicana, on insect contributions to riparian songbird diets. This plant was introduced over 100 years ago to the Clear Creek drainage in northwestern Colorado (USA) from its native range, which extends into southern Colorado. We used stable isotope analysis of insects and avian feces to 1) assess whether the relative contributions of aquatic- and terrestrial-derived arthropod prey differed between reference sites and sites invaded by R. neomexicana, and 2) quantify the amount of aquatic- and terrestrial-derived resources consumed by an insectivorous songbird assemblage. Two species of insectivorous songbirds consumed more aquatic insects in invaded sites compared to reference sites. This change in terrestrial- and aquatic-derived prey in bird diets in response to a near-range plant invasion suggests that the introduction of novel species from more distant native ranges could produce similar or stronger effects. Overall, the songbird community consumed approximately 34% aquatic resources, which highlights the importance of these subsidies to riparian consumers. Our investigation of insect subsidies demonstrates how introduced species can indirectly affect food webs and provides insight into the plasticity of riparian consumer responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.